California's Regulatory Process to Protect Public Health for Crop Irrigation Reuse and Potable Reuse

Robert Hultquist

Agricultural Irrigation Reuse

- Includes Food Crops Eaten Raw (Produce)
- 37% of California Total Reuse
- 300 hm³/year
- 25,000 ha
- 52 crop types

Indirect Potable Reuse

- Regulation in 2014
- 7 Large Projects(approved pre Regulation)
- 19% of California Reuse
- 160 hm³/year
- Surface Spreading and Injection

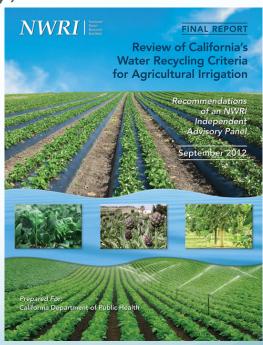
Groundwater Replenishment IPR Projects in the Los Angeles Area

Current Activities

- Recent California Legislation
 - Adopt Surface Water Augmentation regulation
 - Determine feasibility of developing Direct Potable Reuse regulation
- Proposition 1 provides \$625 million (USD) in funding for recycled water projects.
 - Loans and grant for planning and construction activities
- Authorizing a surface water augmentation project
- Starting to develop direct potable reuse regulations

California Reuse Drivers

- Arid and less snow in Sierra Nevada
- Droughts
- Population growth
- Groundwater overuse
- California policy and legislation
 - Water Industry and Environmental Group influence
- Competition for water among agriculture, urban areas, and environmental needs


Agricultural Reuse Process

- Regulation (1978)
 - Treatment standard
- Monterey Study
 - Irrigation pumping was pulling sea water into an important aquifer
 - The State adopted a plan to consolidate wastewater into a reclamation plant for crop irrigation if long term reuse could be shown to be safe for the public, crops, groundwater, soil, and farm workers.
 - Safe √

Agricultural Reuse (2)

 Monterey area now the largest raw-eaten food crop area in the world irrigated with recycled water, growing strawberries, lettuce, broccoli, celery, and artichokes.

- Regulation risk reviewed (2012)
 - Achieves 1 in 10,000 annual risk of infection public health goal

Types of Potable Reuse

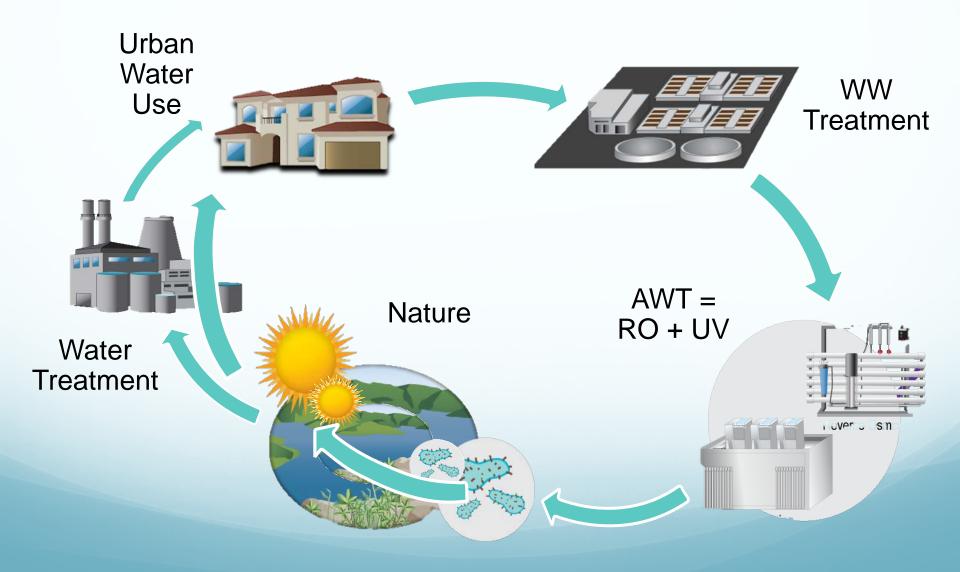
- The use of a river with a wastewater discharge as a source of drinking water is called incidental, de facto, or unplanned potable reuse
- Indirect potable reuse (IPR) the planned delivery or recycled wastewater to a groundwater or surface drinking water source
 - IPR is characterized by a substantial environmental separation between wastewater treatment and water use
 - Barrier to contaminants
 - Time to react to a treatment failure
- Direct Potable Reuse dispenses with the substantial environmental component

Drinking Water Source Quality

Chemical Contamination

Extremely Impaired

Impaired


IPR & DPR

Pathogen Contamination

Public Health Goals

- Pathogens all reuse
 - 1 in 10,000 annual risk of infection
- Potable Reuse pathogens
 - 12, 10 and 10 are California log₁₀ reduction targets for enteric virus, *Giardia*, and *Cryptosporidium*
 - Raw wastewater to drinking water
 - Based on worst case wastewater levels
- Potable Reuse Chemicals
 - Drinking Water Standards
 - Notification Levels
 - Unregulated chemicals (CECs) at or below levels in good conventional sources

Planned Indirect Potable Reuse

Calif. Indirect Potable Reuse via Groundwater Recharge

- Montebello Forebay (1960's)
 - Primary, secondary, filtration, disinfection, soil-aquifer treatment (spreading), dilution, travel time
- Water Factory 21 (1976)
 - WW treatment + lime clarification + reverse osmosis (RO) or activated carbon
 - Injection for seawater intrusion barrier
- Projects demonstrated the need, ability, and community determination to do groundwater recharge IPR

1980s and 90s Scientific Basis and Regulation Development

- Science Advisory Panel report and the charge to draft comprehensive regulation (1986)
 - report said provided basis for new project approvals
 - limited exposure, time, and low organic carbon level
- Extensive studies at Montebello Forebay and Water Factory-21 by the utilities
- Draft criteria developed

Gaining Experience with the Draft Criteria

- Numerous groundwater recharge IPR proposals
 - West Basin West Coast Barrier 1995
 - Dominguez Gap, Los Alamitos, Inland Empire
 - Orange County Groundwater Replenishment project in 2008
- Every project advanced the science and understanding of potable reuse

Case-By-Case Process

- Independent Advisory Panel (IAP) for proposals
 - Membership approved by State
 - Science and technology experts
 - Advisors to the project proponent, their consultants, and the State regulators
- IAP required whenever the State has technical questions about the proposal
- Numerous meetings during project development to discuss Permit issues and studies requested by the IAP or State

Draft Criteria Improved With Case-By-Case use

- Each proposal had new conditions, approaches or requests for alternatives to criteria they could not meet
- The project proponent was responsible for providing the research justifying criteria modifications
- Criteria changed
 - More flexible: additional treatment and monitoring schemes were approved
 - Changed unworkable criteria
 - Deleted unnecessary criteria

CEC Criteria Reassessment

- Contamination with NDMA and 1,4-dioxane
- The project operator was very responsive to the State and well owners, and provided the necessary additional treatment
- Project response saved potable reuse in California
- Criteria inadequate
 - Tighten the TOC objective, thus requires an improved type of RO
 - added UV/hydrogen peroxide (AOP) (2001-2)

Pushing the Limit to 100% (2001-2)

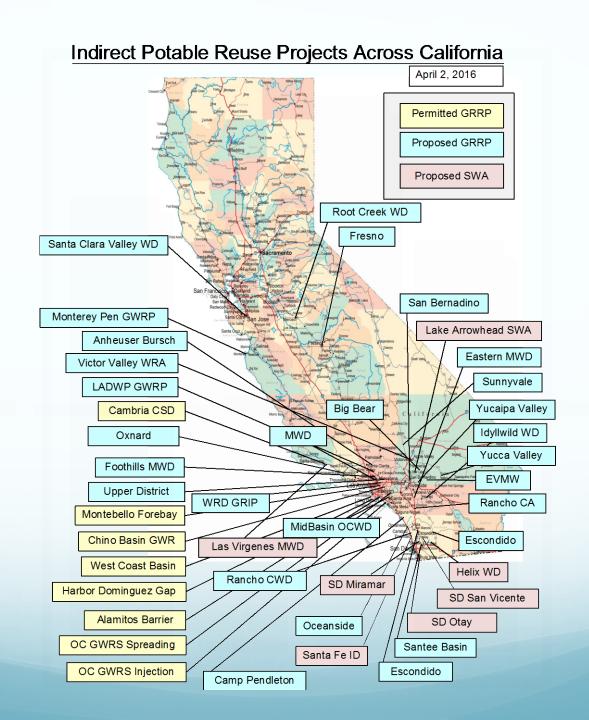
- Important because dilution water increasingly difficult or impossible to obtain
- Up until 2000 draft criteria only allowed 50% recycled water at a drinking water well
- West Basin requested 100% -
 - required to form an IAP to advise on the issue
- Regulation changed to allowed 100% based on West Basin research and IAP recommendations for additional treatment

Regulation Drafting and Adoption Process

- Review the literature
- Consult experts on the science and technology
- Consult water utilities for their experience and insights
- Draft criteria and request comments
- Draft and submit a regulation
 - Legal review and other reviews
 - Public comment
 - Response to comments
 - Final approval (?)

Groundwater Replenishment Regulation - 2014

- Pathogens
 - Rational approach (Australian) that fosters confidence
 - Regulators, scientists, public, policy makers
 - Risk based organism log reductions
 - 12-log virus, 10-log each for Giardia & Cryptosporidium
 - Based on very protective assumptions
 - Multi barrier treatment


2014 Regulation (continued)

- Chemicals
 - Drinking Water Standards
 - Notification Levels
 - CECs
 - Source control
 - Multi-barrier treatment
 - Soil-aquifer + dilution or RO/AOP

 Time underground to identify and respond to any "situation"

Surface Water Augmentation Indirect Potable Reuse

- Environmental barrier
 - Reservoir storage rather than aquifer
 - Mixing more important than time
 - Mix to attenuate a brief treatment failure
- Build on groundwater replenishment IPR experience
- Study by San Diego demonstrated the benefit of the reservoir
- Draft completed (?)

Direct Potable Reuse (DPR)

- Legislation required Expert Panel to study feasibility of developing regulations for DPR
- Both groups met with the State over two years
 - Briefed on our thinking, needs, and questions
 - Need objective criteria
 - Need to specify the necessary reliability
- "Evaluation of the Feasibility of Developing Uniform Water Recycling Criteria for Direct Potable Reuse"
- Criteria Feasible ✓

Moving Toward DPR Criteria

- Expert Panel, Advisory Group, WateReuse DPR research initiative, other research products, and experience with IPR have provided an understanding of how DPR might be done safely
- Our experience with the development of IPR criteria has shown that it is a sizable step, however, from being confident that something can be safe to producing criteria that assure that it will be accomplished safely, in every case, all the time.

Criteria Objectives

- When the Expert Panel embarked we offered several objectives for criteria. The criteria:
 - Must be enforceable (enable an objective compliance determination);
 - Must be unambiguous regarding the critical protective features; and
 - Must assure that any proposal that can comply, will actually produce safe water continuously.

Knowledge Gaps Remain

- Key Expert Panel findings on DPR performance and reliability lead to further questions.
- Workshops with experts needed to resolve.
- For example: Extra Organism Log reduction Capacity
 - "Use a treatment train ... with multiple, independent treatment barriers ... that meet performance criteria greater than the goals ... for microorganisms"
 - How much additional LRV capacity is necessary?

Knowledge Gap: Chemical Peak Attenuation

- Regarding short-term discharges of chemicals into the wastewater collection system -
- "... incorporating a final treatment process ... after the advanced water treatment train may result in some "averaging" of these potential chemical peaks."
 - How much "averaging" is necessary and how do we specify it?

Finally ...

 Draft DPR criteria and then invite the water industry to challenge them with all imaginable proposals to make sure they will always assure safe DPR projects