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Executive Summary 

 California presently recycles approximately 650,000 acre-feet of water per year, but has 
identified the potential to reuse an additional 1.5 million acre-feet in the future. To encourage 
expanded reuse in a state that is experiencing water shortages, the California State Water 
Resources Control Board (SWRCB) adopted a Recycled Water Policy in February 2009 intended 
to provide permitting clarity for recycled water projects. One challenge in developing that 
policy was how to address new classes of chemicals, such as pharmaceuticals, current use 
pesticides, and industrial chemicals, collectively referred to as chemicals of emerging concern 
(CECs). Many CECs are potentially present in recycled water, but the detection of many of these 
chemicals is so recent that robust methods for their quantification and toxicological data for 
interpreting potential human or ecosystem health effects are unavailable.   

Recognizing that consideration of CEC effects on human health and aquatic life is a rapidly 
evolving field, and that regulatory requirements need to be based on best available science, the 
SWRCB included a provision in the Recycled Water Policy to establish a Science Advisory Panel. 
The Panel’s primary charge is to provide guidance for developing monitoring programs that 
assess potential CEC threats from various water recycling practices, including indirect potable 
reuse via surface spreading; indirect potable reuse via subsurface injection into a drinking water 
aquifer; and urban landscape irrigation.   

The Panel was formed in May 2009 and includes six national experts in the fields of 
chemistry, biochemistry, toxicology, epidemiology, risk assessment and engineering, with more 
than 100 years of combined experience investigating CEC issues. The Panel held four in-person 
meetings and numerous conference calls over the last year. The meetings included the 
opportunity for stakeholder input in clarifying their charge, exchange of information, dialog 
with the Panel and consideration of public comments on the draft report. This report provides 
the results from the Panel’s deliberations, including four products intended to assist the State 
in refining its recycled water policy. 

Product #1:  A conceptual framework for determining which CECs to monitor 

Given that thousands of chemicals are potentially present in recycled water and that 
information about those chemicals is rapidly evolving, the Panel recommends that the State 
rely on a transparent, science-based framework to guide prioritization of which CECs should be 
included in recycled water monitoring programs both now and in the future as additional data 
become available. Figure ES1 describes the Panel’s recommended framework, which includes 
four steps:  

1. Compile environmental concentrations (e.g., measured environmental 
concentration or MEC) of CECs in the source water for reuse projects;  

2. Develop a monitor triggering level (MTL) for each of these compounds (or groups 
thereof) based on toxicological relevance;   

3. Compare the environmental concentration (e.g., MEC) to the MTL. CECs with a 
MEC/MTL ratio greater than “1” should be prioritized for monitoring.  Compounds 
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with a ratio less than “1” should only be considered if they represent viable 
treatment process performance indicators; and,  

4. Screen the priority list to ensure that a commercially-available robust analytical 
method is available for that compound. 

 

This part of the framework is focused on CECs for which there are concentration data from 
recycled source water and toxicological information. The framework also includes a provision 
for prioritizing chemicals for which such information is presently unavailable and which are 
referred to in the framework as “unknown unknowns”. For these chemicals, the framework 
focuses on the prediction of environmental concentrations and the use of bioanalytical and 
chemical screening methods to identify chemicals for which there is the greatest urgency in 
developing MEC and MTL data for 
further assessment. The Panel 
understands that a chemical-by- 
chemical approach for prioritization 
of CECs is difficult because of limited 
resources and the growing number 
of CECs being identified. The Panel 
recognizes that bioanalytical 
methods will likely be the best way 
to accomplish this task. Although the 
USEPA have developed high-
throughput bioanalytical screens for 
chemical testing, a prioritization 
framework for the evaluation of 
water using bioanalytical methods is 
not available at this point in time. 
However, the Panel encourages this 
topic to be a focus of research and 
development and future review 
meetings by an independent advisory 
panel (suggested for 2013) as more 
information becomes available.  

Figure ES1. Conceptual framework to prioritize CECs for 
inclusion in recycled water monitoring programs. 

 

 
 

In addition to defining an approach to select CECs to monitor based on their potential to 
pose a health risk, the Panel also defined an approach to identify indicator compounds for 
assessing treatment performance. Most reuse projects employ multiple treatment processes 
with a demonstrated ability to remove contaminants, but the treatment processes need a 
monitoring program designed to protect against system performance failures. The Panel’s 
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recommended approach for monitoring removal of CECs during treatment is to use a 
combination of surrogate parameters and CEC indicator compounds tailored to monitor the 
removal efficiency of individual unit processes. An indicator compound is an individual CEC that 
represents certain physicochemical and biodegradable characteristics of a family of trace 
organic constituents.  The indicator compounds are relevant to fate and transport of broader 
classes of chemicals and provide a conservative assessment of removal during treatment.  A 
surrogate parameter is a quantifiable change of a bulk parameter that can measure the 
performance of individual unit processes (often in real-time) or operations in removing trace 
organic compounds and/or assuring disinfection. 

 
Product #2:  Application of the framework to identify a list of chemicals that should be 
monitored presently 

To assist the State in short-term program implementation, the Panel compiled available 
California MEC data and derived initial MTLs from drinking water benchmarks to apply its 
recommended screening approach and identify the chemicals that should be prioritized for 
present CEC monitoring. In applying the framework, the Panel made a number of conservative 
assumptions (e.g., MECs reported to the Panel are indeed representative for the entire state, 
analytical method used to quantify are accurate, etc.) to maximize the number of candidate 
chemicals that are toxicologically relevant.   

For groundwater recharge projects, four indicator compounds were prioritized based on 
their toxicological relevance: N-nitrosodimethylamine, 17beta-estradiol, caffeine, and triclosan. 
In addition, four additional CECs (N,N-Diethyl-meta-toluamide (DEET), gemfibrozil, iopromide 
and sucralose) were identified for surface spreading and direct injection operations as viable 
performance indicator compounds along with certain surrogate parameters (e.g., ammonia, 
dissolved organic carbon, conductivity), which differ by the type of reuse practice. The Panel 
also recommended method reporting levels (MRLs) that were compound specific and that 
ranged from 1 to 100 ng/L for these CECs. For monitoring programs to assess CEC threats for 
urban irrigation reuse, none of the chemicals for which measurement methods and exposure 
data are available exceeded the threshold for monitoring priority. This is largely attributable to 
higher MTLs because of reduced water ingestion in a landscape irrigation setting compared to 
drinking water. For irrigation applications, the Panel recommends monitoring emphasis be 
placed on use of surrogate parameters that can demonstrate that the treatment processes 
employed are effective in removing CECs.  

The Panel emphasizes that all compounds listed above represent an initial list based on the 
limited data that are presently available and on a number of qualifying assumptions discussed 
in the report. The Panel believes it is critical to emphasize that if a measured or predicted 
concentration of a CEC at the point of monitoring (POM) exceeds its respective MTL, the finding 
does not indicate a public health risk exists. The MTLs and their application in the Panel’s 
proposed framework are developed to be conservative and used only for the purpose of 
prioritizing CECs for monitoring. The Panel’s proposed MEC/MTL ratios should not be used to 
make predictions about risk.  



CEC Panel FINAL REPORT – June 2010 Executive Summary 

 v 

While the priority list of CECs represents a conservative screening of “CECs at large”, the 
information available for such screening is growing rapidly and the Panel urges the State to 
reapply this prioritization process on at least a triennial basis. In order to fill data gaps for CECs 
with limited or no information on MECs in California, the Panel suggests that the State initially 
conduct a more thorough review of CECs likely to occur in recycled water using MEC and 
predicted environmental concentration (PEC) data from the peer-reviewed literature and 
occurrence studies outside California. Those CECs that exhibit MEC/MTL ratios above “1” could 
be placed on a secondary monitoring list that is measured less frequently to confirm either 
presence or absence of these CECs in recycled water in California. In addition, this secondary 
monitoring list could be populated by CECs that exhibit a relatively low MTL (less than 500 ng/L) 
based on the Panel’s initial screening of various toxicological data bases. Results of these 
efforts, along with the monitoring data collected as part of the Panel’s recommended program, 
can provide the basis for revising the proposed initial monitoring list during the next, and each, 
triennial review.  

 
Product #3:  A sampling design and approach for interpreting results from CEC monitoring 
programs  

The Panel recommends a phased, performance-based approach for implementing CEC 
recycled water monitoring programs and a multi-tiered framework for interpreting the resulting 
data. Use of multiple tiers allows for a flexible, adaptable response to increase or decrease the 
information requirements from the monitoring program based on the initial results, providing a 
cost-effective means for incremental information gathering. The report also contains specific 
performance-based recommendations regarding strict sampling and analytical measurement 
quality assurance guidelines that are required at each phase. 

The first phase involves screening that would be initiated at project start-up and continue 
through the early years of project operation. Recommended monitoring frequency during this 
first phase would be quarterly at project start-up decreasing to twice annually for more mature 
operational phases. If a specific CEC consistently exhibits low occurrence, the Panel 
recommends deleting the CEC from further monitoring provided that production data do not 
suggest a significant increase in use. If CECs exceed thresholds identified in the report, the 
Panel recommends moving to a second phase of enhanced monitoring to confirm the presence 
and frequency of such CEC(s). The third phase, should concentrations continue to be high, 
would require initiation of source identification and/or toxicology studies. The final phase 
would involve engineering removal studies and/or modification of plant operation if found to 
be warranted by the results of the third phase.  

While the Panel provides recommended thresholds for each of these phases, conservative 
values were selected because of limited MEC data and constraints on the time the Panel had to 
review toxicological information. The Panel also understands that differences in recycled water 
quality and facility operations will occur by region and that investigation of chronic exceedances 
will need to be tailored on a regional or case-by-case basis. Moreover, the Panel recognizes that 
these monitoring recommendations are appropriate for investigative purposes and should not 
be construed as directly applicable for determination of regulatory compliance.   
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Product #4:  Priorities for future improvements in monitoring and interpretation of CEC data  

The science of CEC investigation is still in its early stages and the State can undertake 
several activities that will greatly improve both monitoring and data interpretation for recycled 
water management. The Panel provides a number of such recommendations, including: 1) 
Develop and validate more and better analytical methods to measure CECs in recycled water; 2) 
Encourage development of bioanalytical screening techniques that allow better identification of 
the “unknown unknown” chemicals; and 3) Develop a process to predict likely environmental 
concentrations of CECs based on production, use and environmental fate, as a means for 
prioritizing chemicals on which to focus method development and toxicological investigation. 
These investigations should be conducted with guidance and review by a Science Advisory 
Panel.  

In addition to these research recommendations, the Panel recommends that the State 
develop a process to rapidly compile, summarize, and evaluate monitoring data as they become 
available. The Panel further recommends that the State establish an independent review panel, 
such as this one, that can provide periodic review of the proposed selection approach, reuse 
practices, and environmental concentrations of ongoing CEC monitoring efforts, particularly as 
data from the monitoring programs recommended here become available.   
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1.0 Introduction 

1.1 Background 

Recycled water is becoming an increasingly important part of California’s water supply.  
California presently recycles approximately 650,000 acre-feet of water per year, an amount that 
has doubled in the last twenty years (WateReuse, 2010). Future reuse potential in the State is 
estimated to be an additional 1.4 to 1.6 million acre-feet per year by 2030.    

To encourage expanded reuse in a state that is experiencing water shortage, the California 
State Water Resources Control Board (SWRCB) adopted in February 2009 an updated Recycled 
Water Policy (adopted under Resolution No. 2009-0011) intended to provide permitting clarity 
while ensuring protection of water quality. The Policy states that local water and wastewater 
entities, together with stakeholders, will fund locally driven and collaborative processes to 
develop salt/nutrient management plans for each groundwater basin /sub-basin in California. In 
addition, the Policy and supporting information provide further definition and clarification to 
the collaborative roles of the SWRCB, the California Department of Public Health (CDPH), the 
Regional Water Quality Control Boards (RWQCB), and the California Department of Water 
Resources (DWR). 

One challenge in developing that policy was how to address new classes of chemicals, such 
as pharmaceuticals and personal care products (PPCPs), currently used pesticides, and 
industrial chemicals, collectively referred to as chemicals of emerging concern (CECs). This 
diverse group of relatively unmonitored chemicals has been found to occur at trace levels in 
wastewater discharges, ambient receiving waters, and drinking water supplies, but many of 
them are so new that standardized measurement methods and toxicological data for 
interpreting their potential human or ecosystem health effects are unavailable. This lack of 
basic information and technology to efficiently measure CECs hampers the State’s ability to 
assess their potential risks and develop regulatory protocols. For many of these chemicals, even 
information about product-specific applications is unavailable, making it difficult to ascertain 
the probability of exposure and the potential to impact beneficial uses of water resources in 
California. 

 
1.2. The Science Advisory Panel  

Recognizing that consideration of CEC effects on human health and aquatic life is a rapidly 
evolving field and that regulatory requirements need to be based on best available science, the 
SWRCB included a provision in the Recycled Water Policy to establish a Science Advisory Panel 
that would provide guidance in developing monitoring programs that assess the potential 
health threat of CECs from various water recycling practices. The Panel was formed in May 
2009 and included six national experts in the fields of chemistry, biochemistry, toxicology, 
epidemiology, risk assessment, and engineering. These experts have more than 100 years of 
combined experience investigating CEC issues. A brief biography of each panel member is 
provided in Appendix A:  

 Dr. Paul Anderson, ARCADIS and Boston University  
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 Dr. Nancy Denslow, University of Florida 

 Dr. Jörg E. Drewes, Colorado School of Mines (Chair) 

 Dr. Adam Olivieri, EOA, Inc. 

 Dr. Daniel Schlenk, University of California-Riverside 

 Dr. Shane Snyder, Total Environment Solutions, Inc. 

 
The Panel held four in-person meetings and numerous conference calls. The meetings 

included the opportunity for stakeholder input in clarifying their charge, exchange of 
information, dialog with the Panel and consideration of public comments on the draft report. 
This report provides the results from the Panel’s deliberations.   

 
1.3 Charge to the Science Advisory Panel  

The Panel was provided with five specific charge questions (see accompanying box), but was 
generally asked to review the occurrence, relevance, and quantification of CECs in recycled 
water in the State of California with the goal to provide recommendations for development of a 
monitoring program of CECs in recycled water. The Panel was asked to focus on three reuse 
practices in which CECs may represent a potential 
threat to human and aquatic health: 

1) Indirect potable reuse via surface spreading of 
recycled water; 

2) Indirect potable reuse via subsurface injection of 
recycled water into a potable aquifer; and  

3) Urban landscape irrigation with recycled water.  

 

The Panel chose to focus its recommendations on 
toxicological relevance of CECs to human health 
because most water reuse practices have limited 
impact on ecological receptors (see Appendix B for a 
more detailed discussion). Other reuse practices that 
could result in discharge of recycled water to surface 
water, estuaries, and the ocean were also not 
addressed by the Panel. However, the SWRCB, in 
collaboration with the Packard Foundation, established another Science Advisory Panel in 
January 2010 that was charged to address CEC discharge to the ocean and potential effects of 
exposure of humans and ocean life to CECs from this practice. The report issued by the ocean 
discharge panel is forthcoming in the spring of 2011. 

In considering the charge, the Panel defined CECs to represent personal care products, 
pharmaceuticals including antibiotics and antimicrobials; industrial, agricultural, and household 
chemicals; natural hormones; food additives (e.g., phytoestrogens, caffeine, sweeteners); 

Charge to the Science Advisory Panel 

 What are the appropriate constituents 
to be monitored, including analytical 
methods and method detection limits? 

 What is the known toxicological 
information for the above constituents?   

 Would the above lists of constituents 
change based on level of treatment and 
use?  If so, how?   

 What are possible indicators that 
represent suites of CECs?  

 What levels of CECs should trigger 
enhanced monitoring of CECs in recycled 
water, groundwater, and/or surface 
waters? 
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transformation products, inorganic constituents (e.g., boron, chlorate, gadolinium); and 
nanomaterials. The Panel also chose not to consider the occurrence of waterborne microbial 
pathogens or their acquisition of antibiotic resistance. Given the multiple barrier concept and 
water treatment process redundancy requirements in place, the Panel believes that the 
potential public health risk associated with exposure to pathogens in recycled water used for 
landscape irrigation or groundwater recharge1 is very small. However, the Panel acknowledges 
that some uncertainties exist regarding the occurrence of emerging waterborne microbial 
pathogens and encourages additional research into their fate in water reuse systems.  

The Panel did provide a cursory review of antibiotic resistance in relation to water reuse 
practices (see Appendix C) and realized that the issue was complex and that a thorough 
treatment required more resources than the Panel had access to. Nevertheless based on the 
cursory review the Panel conducted, antibiotic resistance does not appear to be an issue with 
the water reuse practices considered, but the Panel also recommends that a more appropriate 
panel (e.g., Centers for Disease Control and Prevention) complete a more thorough review and 
validate the Panel’s preliminary conclusions. 

 
1.4 Organization of the Report 

This report contains 9 sections and 13 appendices. The remainder of this section describes 
the potential exposure scenarios for each of the three reuse practices the Panel was asked to 
consider. Sections 2 through 4 provide background material on the regulatory framework for 
CECs, the water reuse practices in California, and a review of toxicological relevance of CECs. 
Sections 5 through 7 describe the California relevant information needed to develop a 
recommended monitoring program. Section 8 describes the Panels’ proposed framework for 
selecting CECs for monitoring programs, and Section 9 summarizes the Panel’s 
recommendations.   

 
1.5 Reuse Practices and Pathways to Exposure to CECs  

 To illustrate potential pathways of exposure of CECs to humans and aquatic life for the 
three reuse practices the Panel was asked to consider, the key treatment elements of each 
application, the points of monitoring (POMs) from a regulatory standpoint, and potential points 
of exposure (POEs) to humans and aquatic life are illustrated in Figures 1.1 to 1.3.  

 Groundwater recharge to augment drinking water supplies is currently practiced in several 
reuse projects in California. These projects apply recycled water either via surface spreading or 
subsurface injection. Surface spreading operations utilize recycled water with a quality equal to 
that resulting from tertiary treatment that then is applied to infiltration or recharge basins. 
Subsequently, this water is subjected to soil-aquifer treatment (SAT) resulting in additional 

                                                      
1
 Multiple barriers for the groundwater recharge projects include source control and consideration of the 

treatment processes at the water recycling plant, attenuation during groundwater recharge including detention 
time, dilution, and die-off, and various potable water treatment processes associated with the production of 
finished potable water. 
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improvements of water quality in the subsurface. During recharge, recycled water is subject to 
dilution with native groundwater and other recharged water sources, such as stormwater and 
imported surface water. Subsurface injection projects require more advanced treatment prior 
to injection and also take advantage of dilution with native groundwater and recharged water 
from other sources. For groundwater recharge projects in California, the recharged water is 
required to remain in the subsurface for a minimum of six months prior to extraction. Following 
extraction, the water is disinfected and may also receive other forms of post-treatment prior to 
entering distribution systems for drinking water supply. 

 
1.5.1 Surface Spreading Operations 

For surface spreading operations, the Panel recommends monitoring for CECs in the 
recycled water applied to a spreading basin and in the mound of the uppermost groundwater 
or a lysimeter in the vadose zone (Figure 1.1). This monitoring regime will confirm the presence 
of CECs and allow an assessment of the efficiency of SAT. Considering the ubiquitous 
occurrence of many CECs, it is noteworthy that CECs in recharged groundwater can also be 
introduced through other sources such as natural recharge from surface run-off or blending 
with native groundwater that is impacted by CECs.  

 

 

 

 

 

 

 

 

 
 
Figure 1.1. Conceptual model of surface spreading reuse operations in California (recycled water 
contribution <50% at point of extraction). 

 

 For the practice of surface spreading, the Panel discussed potential POEs for remaining CECs 
related to human health and identified an extraction or pumping well downstream of the 
spreading operation as the most important pathway for potential exposure. Due to the depth 
of groundwater where surface spreading is practiced, recycled water used in groundwater 
recharge operations usually does not ex-filtrate into lakes, reservoirs, or streams located 
downstream of a recharge facility. Thus, the Panel felt that the potential exposure of humans or 
aquatic life to CECs in recharged recycled water in surface water sources downstream of the 
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recharge basins is considered negligible (Figure 1.1). Surface spreading operations are usually 
subject to wet/dry cycles involving periodic drying of a recharge basin. This mode of operation 
does not provide a habitat for establishment of perennial fish populations. Thus, the Panel felt 
that both the exposure of aquatic life, such as fish, to CECs in spreading basins during a wet 
cycle, as well as human exposure to CECs through consumption of fish from spreading basins, is 
assumed to be negligible. 

 
1.5.2 Subsurface Injection Operations  

For direct injection into a potable aquifer projects using highly treated recycled water, the 
POM is the recycled water after above-ground advanced treatment prior to injection into an 
aquifer (Figure 1.2). Considering the isolation of recycled water from direct contact after 
injection into the subsurface, the Panel concluded that any potential exposure to humans by 
remaining CECs in recycled water is limited to water extracted from the pumping well 
downstream of a recharge facility.  
 

 
 
Figure 1.2. Conceptual model of subsurface spreading reuse operations in California (recycled water 
contribution >50% at point of extraction). 

 

In California, direct injection projects require treatment of recycled water using reverse 
osmosis (RO) followed by - in some cases – advanced oxidation processes (AOP). Reverse 
osmosis is a physical separation process generating a concentrate that contains all chemicals 
that are rejected by the RO membrane. CECs are concentrated in this brine stream and where 
ocean discharge or discharge to surface water is practiced, aquatic life can be exposed to CECs 
at the point or in the vicinity of the discharge. Potential exposure pathways to CECs from this 
practice were not addressed by this Panel but will be evaluated by another Science Advisory 
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Panel that was specifically charged to address CEC discharge to the ocean and potential 
exposure to human health and ocean life from this practice. 

 
1.5.3 Landscape Irrigation 

Landscape irrigation is the most commonly practiced form of reuse in the State of 
California. Recycled water used for these applications requires either secondary or tertiary 
treatment (as specified in California’s Title 22 regulation) depending on restricted or 
unrestricted access of areas irrigated with recycled water (Figure 1.3). Numeric water quality 
permit effluent requirements generally have to be met once the finished recycled water 
completes the final stage of treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Conceptual model of reuse operations for landscape irrigation in California using recycled 
water meeting Title 22 requirements. 

 

State Water Resources Control Board requirements also address water quality objectives in 
receiving waters (i.e., surface and ground waters). In addition, both restricted and unrestricted 
landscape irrigation applications are subject to specific permit requirements (i.e., best 
management practices) that minimize any unintentional discharge, ponding, flooding of 
recycled water, and subsequent public exposure. Thus, the Panel concluded that exposure of 
aquatic life to any CECs remaining in recycled water used for landscape irrigation is considered 
negligible and unintentional public exposure is minimized. Exposure to terrestrial wildlife from 
CECs might occur in the topsoil or root zone that usually is exposed recycled water. While 
human exposure to CECs can occur through incidental contact with and accidental consumption 
of recycled water from sprinkler heads, faucets, or hydrants, it does not warrant a monitoring 
program for CECs to protect public health. 
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2.0 Regulatory Paradigm to Protect US and California Drinking Water 

2.1 Defining the Universe of CECs Relevant to Water Recycling in California 

After reviewing the federal regulatory approach to identify potential contaminants in 
drinking water as well as California’s approach to include additional contaminants in monitoring 
efforts in drinking and recycled water, the Panel concluded that it is important to develop a 
sound and transparent process that can guide in the prioritization of CECs to be included in 
monitoring programs of recycled water applications within the State. In order to be all 
encompassing, the Panel considered CECs at large as a starting point for its deliberation and 
agreed that the United States Environmental Protection Agency (USEPA) Candidate 
Contaminant List 3 (CCL3) selection process represents a transparent and comprehensive 
approach that provides a very good basis for identifying CECs that are relevant and potentially 
present in recycled water and not already regulated at the federal or state level. However, as 
noted previously, the Panel also recognizes that even CCL3 is not likely inclusive of a diversity of 
monitoring data that has been collected in the State of California for various CECs.  

The Panel acknowledged that recycled water quality is subject to ongoing monitoring 
requirements and although recycled water has been extensively researched in the past, it has 
the potential to contain compounds that have yet to be identified and quantified using 
laboratory analytical methods (Figure 2.1). These compounds can be described as ”unknown 
unknowns” representing chemicals, which presence in recycled water is unknown and no 
analytical methods currently exist for their detection. Some of these compounds might pose a 
potential threat to human health and the environment.  

 
Figure 2.1. Classes of CECs potentially present in recycled water to be considered for monitoring 
programs in California. 

 

Recycled water also contains chemicals that have been previously identified, analytical 
methods exist for their detection, and measured environmental concentrations (MECs) are 
available in California recycled water (these compounds can be described as “known knowns”). 
These CECs are either listed on the CCL3 (“CCL3 CECs”) or do not appear on CCL3 (“non-CCL3 
CECs”).  

Other compounds, such as transformation products, are known to occur in recycled water 
but the concentrations at which they occur have not yet been quantified. These compounds can 
be described as “unknown knowns” and, although MECs in recycled water are not currently 
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available in California, predicted environmental concentrations (PECs) could be developed for 
such compounds if use and other information are available.   

The Panel concluded that any proposed monitoring strategy for CECs needs to address the 
different categories of compounds present or potentially present in recycled water as well as 
their relevance to public and environmental health. The Panel’s approach to identify the public 
health relevance of CECs in recycled water is described in Section 4 of this report. MECs of CECs 
in California are presented in Section 5. Bioanalytical methods that may be useful for a better 
characterization of “unknown unknowns” are discussed in Section 6. 

 
2.2 USEPA’s Candidate Contaminant List 3 

To protect public health, the United States (US) Government has a long and rich history in 
developing regulations for contaminants in drinking water. The process has evolved over 
several decades and the key elements that are most germain to this effort were instituted as a 
result of the Safe Drinking Water Act (SDWA) of 1974, and more specifically, can be found in the 
identification of currently non-regulated contaminants on the USEPA Candidate Contaminant 
List (CCL). The process to develop the current list, CCL3, was far more systematic and objective 
than the more subjective selection of contaminants used for its predecessors, CCL1 and CCL2. 
The CCL3 selection process utilized the expert opinions provided by National Academy of 
Sciences (NAS)/National Research Council (NRC) Panels as well as the National Drinking Water 
Advisory Council (NDWAC) and Science Advisory Board (SAB). This multi-step process includes 
three key elements: 

 Identification of a broad universe of potential biological chemical and chemical 
contaminants (CCL Universe); 

 Application of screening criteria based on potential occurrence and human health 
relevance (preliminary CCL or PCCL); and, 

 Selection of priority contaminants based on more detailed occurrence and health effect 
data as well as expert judgment, public comment, and external advisory committees 
(draft and final CCL). 

 
A draft of the CCL3 was released in February 2008 and the final CCL3 was published in 

October 2009 (Appendix D, Table D-1). The general process utilized in the development of the 
CCL3 is shown schematically in Figure 2.2. The CCL3 Universe is to encompass a wide array of 
potential water contaminants, both chemical and microbial. The Universe includes not only 
compounds known or anticipated to occur in water supplies, but also releases to the 
environment and production volume. Additionally, the Universe is to include contaminants with 
demonstrated or adverse health effects, regardless of occurrence data. Due to the wide array 
of potential data, the USEPA chose to follow the advice of the NDWAC, in relying primarily on 
easily accessible databases for the information that would be used to generate the CCL3 
Universe. The accessibility became a highly limiting factor, as any database to be used must be 
electronically accessible and free of charge. The EPA initially identified some 284 potential 
databases on which they could rely for populating the CCL3 Universe 
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(http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_Chemicals_Universe_08-31-
09_508_v3.pdf); however, these databases were culled based on relevance, completeness, 
redundancy, and retrievability (Appendix D, Figure D-1). Of the 284 databases initially 
identified, 142 were eliminated due to relevance, 12 eliminated due to completeness, 26 
eliminated due to redundancy, and 64 eliminated due to retrievability. In terms of relevance, 
several databases were found to contain only descriptive data such as used for pesticide 
labeling or nomenclature that is not related to occurrence or toxicity and these were not 
utilized. Completeness was gauged based on minimum documentation and quality 
requirements, such as: contact information, description of data elements, information on how 
data were obtained, and whether or not data were peer-reviewed. Redundancy was assessed 
to avoid duplication and when redundant data was found, the more comprehensive database 
was utilized.  Retrievability was a major limitation for database inclusion; databases that 
provided information in tabular format that could be extracted and formatted were used while 
databases providing information in text format were generally not considered. However, 
databases with simple lists in text format that could be easily imported were sometimes used. 
Due to transparency concerns, databases that were available only by subscription (fees) or 
were proprietary were not utilized. Ultimately, only 40 databases were utilized (Appendix D, 
Table D-2). The limitations on the 
databases that were screened are likely 
the greatest hindrances in utilizing the 
CCL3 for prioritization of CECs in reuse 
systems. While some databases are 
clearly relevant, much of the data 
published in peer-reviewed literature 
and various reports would not have been 
considered in the CCL3 Universe. 
Without question, monitoring data from 
water agencies/utilities in California 
would not likely have been included 
among the databases evaluated, which is 
a major limitation of relying solely on the 
CCL3 as a priority list for CECs of interest 
to California. 

F
i
g
u
Figure 2.2. The CCL3 process (from 
http://www.epa.gov/safewater/ccl/ccl3_processflowdia
gram_docs.html). 

From the 40 databases screened, nearly 26,000 substances were identified. Therefore, 
USEPA developed a pre-Universe selection process to evaluate those compounds that were 
most suitable for inclusion in the Universe (Figure 2.3). The initial process essentially 
determined whether or not a contaminant had health effects (HE) and occurrence data. If only 
HE data were available, these contaminants would be screened to determine if the 
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contaminant was toxicologically relevant (see section of PCCL process regarding relevance). 
Chemicals for which only occurrence data were available were sequentially evaluated for 
finished or ambient source water data, release data, or production of over 1 billion 
pounds/year (Appendix D, Table D-4). 

This pre-Universe selection process identified 7,720 chemicals, which went on to the final 
selection process (Appendix D, Figure D-4). The final selection process first evaluated whether 
or not primary drinking water standards already existed, which eliminated 1,009 chemicals 
(mostly radionuclides and compounds with multiple isomers, such as polychlorinated biphenyls 
(PCBs). Four-hundred thirty substances that are considered mixtures, such as petroleum 
products and resin acids, were eliminated from further consideration. Also, substances that are 
not “chemically defined” (such as wood dust and surgical implants) were eliminated. Lastly, two 
substances were removed because they are considered biological and would not be considered 
within the chemical Universe. The USEPA also considered 174 contaminants that were 
nominated through the public input process and 132 of those nominated were already 
considered. The remaining nominations were evaluated through the same criteria as all other 
chemicals for consideration of the CCL3 Universe. Once the draft CCL3 was released in February 
2008, the USEPA subsequently received 177 comments. From these comments, 30 additional 
contaminants were added to the Universe. 

 

 
Figure 2.3. Initial process for selecting the CCL3 Universe.  
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2.3 Federal Regulatory Monitoring Requirements 

To monitor the list of regulated contaminants, individual water systems submit samples of 
their water for laboratory testing to verify that the water they provide to the public meets all 
federal and state standards. The frequency and location of sampling varies among systems and 
by contaminant but is based on a Standard Monitoring Framework established by the USEPA to 
provide a uniform structure for monitoring requirements for current and subsequent drinking 
water regulations. This framework consists of a nine-year compliance cycle, which is divided 
into three three-year compliance periods. Monitoring requirements vary depending on the 
contaminant group, whether the water system uses ground water or surface water, and on the 
number of people served.  

In addition, states may grant monitoring waivers in certain situations and for certain 
contaminants after the required initial monitoring period. As a state gains a better 
understanding of the contamination sources that may affect the quality of a drinking water 
supply, it can tailor the monitoring requirements for the system. The SDWA, therefore, provides 
that a state may allow a waiver if the state has an approved source water assessment program 
and has completed a source water assessment for that system. The SDWA further requires 
USEPA to issue guidance for states to use in meeting these source water assessment 
requirements and directs USEPA to issue the source water assessment guidance at the same 
time as these alternative monitoring guidelines. 

For a state to issue a waiver in the form of alternative monitoring guidelines, it must ensure 
that the public health will be protected from drinking water contamination, and waivers must 
address contaminants individually. Furthermore, the public water system must show the state 
that the contaminant is not present in the drinking water supply or, if it is present, that it is 
reliably and consistently below its maximum contaminant level (MCL). The guidelines further 
require that if a contaminant is detected at levels at or above its MCL or if its concentration is 
no longer reliably or consistently below the MCL, the system must either demonstrate that the 
contaminant source has been removed or that other action has been taken to eliminate the 
contamination or test for the detected contaminant according to the applicable National 
Primary Drinking Water Regulation (NPDWR). The following boxes provide illustrative examples 
for both select regulated and unregulated contaminants. 

Bromate 

Amendments to the SDWA in 1996 required the USEPA to develop rules to balance the risks between 
microbial pathogens and disinfection byproducts (DBPs). This was done to strengthen protection against 
microbial contaminants, especially Cryptosporidium, and at the same time reduce potential health risks of 
DBPs. The Stage 1 Disinfectants and Disinfection Byproducts Rule, announced in December 1998, was among 
the first of a set of rules under the 1996 SDWA Amendments.  The rule established maximum residual 
disinfectant level goals (MRDLGs) and maximum residual disinfectant levels (MRDLs) for three chemical 
disinfectants—chlorine, chloramine and chlorine dioxide.  It also established maximum contaminant level goals 
(MCLGs) and MCLs for total trihalomethanes, haloacetic acids, chlorite and bromate. 

Under this rule, all drinking water treatment plants that use ozone during the treatment process are 
required to test for bromate on a monthly basis. Compliance is based on the annual average of bromate 
concentration in the finished water, which must not exceed the MCL of 10 µg/L. 
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Perchlorate 

The EPA uses the Unregulated Contaminant Monitoring (UCM) program to collect data for contaminants 
suspected to be present in drinking water, but that do not have health-based standards set under the SDWA. 
The first cycle of the UCM rule (UCMR1), covering the period 2001–2005, was published in the Federal Register 
September 17, 1999 for a list of contaminants that included perchlorate. 

UCMR1 established a tiered monitoring approach based on the availability of analytical methods for each 
contaminant and the size of the utility. All large drinking water utilities (>10,000 persons served) and a 
randomly selected group of small utilities (<10,000 persons served) were required to monitor perchlorate. 
Surface water systems were monitored quarterly during a one-year period and ground water systems were 
monitored twice in a one-year period.  One of these quarterly or semiannual sampling events was required to 
occur in the most vulnerable period of May through July, or an alternate vulnerable period designated by the 
State, to ensure monitoring of potentially higher perchlorate concentrations. The monitoring results from 
these systems were used to estimate national occurrence of perchlorate. 

N-nitrosodimethylamine (NDMA) 

The UCMR supporting the second cycle of monitoring (UCMR2) was signed on December 20, 2006. UCMR2 
requires monitoring a select group of contaminants during 2008–2010, including NDMA.  Similar to UCMR1, 
UCMR2 uses a tiered monitoring approach based on the availability of analytical methods for each 
contaminant and the size of the utility. NDMA was placed on the screening survey list, for which monitoring 
requires analytical method technologies not commonly used by drinking water laboratories. 

All drinking water utilities serving more than 100,000 people, 320 representative utilities serving 10,001-
100,000 people, and 480 representative utilities serving less than 10,001 people are required to monitor for 
NDMA during a 12-month period between January 2008 and December 2010. For systems using groundwater, 
monitoring must occur twice in a consecutive 12-month period and sample events must occur 5 to 7 months 
apart. For systems using surface water or groundwater under the direct influence of surface water, monitoring 
must occur in four consecutive quarters, with sampling events occurring three months apart. Therefore, a 
system could conduct monitoring in either: (1) January, April, July, October; (2) February, May, August, 
November; or (3) March, June, September, December. 

Atrazine 

Atrazine is defined as a synthetic organic chemical in 40 CFR 141.61(c). Therefore, monitoring and the 
potential for a waiver are determined as follows (per 141.24(h); note that some sections have been removed 
for brevity): 

(1) Groundwater systems shall take a minimum of one sample at every entry point to the distribution 
system, which is representative of each well after treatment (hereafter called a sampling point).  Each 
sample must be taken at the same sampling point unless conditions make another sampling point 
more representative of each source or treatment plant; 

(2) Surface water systems shall take a minimum of one sample at points in the distribution system that 
are representative of each source or at each entry point to the distribution system after treatment.  
Each sample must be taken at the same sampling point unless conditions make another sampling 
point more representative of each source or treatment plant; 

(3) If the system draws water from more than one source and the sources are combined before 
distribution, the system must sample at an entry point to the distribution system during periods of 
normal operating conditions (i.e., when water representative of all sources is being used); 
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Atrazine (Continued) 

(4) Monitoring frequency: 

(i) Each community and non-transient non-community water system shall take four consecutive 
quarterly samples for each contaminant listed in § 141.61(c) during each compliance period 
beginning with the initial compliance period. 

(ii) Systems serving more than 3,300 persons which do not detect a contaminant in the initial 
compliance period may reduce the sampling frequency to a minimum of two quarterly samples in 
one year during each repeat compliance period. 

(iii) Systems serving less than or equal to 3,300 persons which do not detect a contaminant in the 
initial compliance period may reduce the sampling frequency to a minimum of one sample during 
each repeat compliance period. 

(5)  Each community and non-transient water system may apply to the State for a waiver from the 
requirement of paragraph (h)(4) of this section. A system must reapply for a waiver for each 
compliance period; and 

(6) A State may grant a waiver after evaluating the following factor(s): 

Knowledge of previous use (including transport, storage, or disposal) of the contaminant within the 
watershed or zone of influence of the system. If a determination by the State reveals no previous use 
of the contaminant within the watershed or zone of influence, a waiver may be granted. If previous 
use of the contaminant is unknown or it has been used previously, then the following factors shall be 
used to determine whether a waiver is granted. 

(i) Previous analytical results; 

(ii) The proximity of the system to a potential point or non-point source of contamination. Point 
sources include spills and leaks of chemicals at or near a water treatment facility or at 
manufacturing, distribution, or storage facilities, or from hazardous and municipal waste landfills 
and other waste handling or treatment facilities. Nonpoint sources include the use of pesticides 
to control insect and weed pests on agricultural areas, forest lands, home and gardens, and other 
land application uses; 

(iii) The environmental persistence and transport of the pesticide or PCBs; 

(iv) How well the water source is protected against contamination due to such factors as depth of the 
well and the type of soil and the integrity of the well casing. 

(7) If an organic contaminant listed in § 141.61(c) is detected (as defined by paragraph (h)(18) of this 
section) in any sample, then: 

(i) Each system must monitor quarterly at each sampling point which resulted in a detection. 

(ii) The State may decrease the quarterly monitoring requirement specified in paragraph (h)(7)(i) of 
this section provided it has determined that the system is reliably and consistently below the 
maximum contaminant level. In no case shall the State make this determination unless a 
groundwater system takes a minimum of two quarterly samples and a surface water system takes 
a minimum of four quarterly samples. 

(iii) After the State determines the system is reliably and consistently below the maximum 
contaminant level the State may allow the system to monitor annually. Systems which monitor 
annually must monitor during the quarter that previously yielded the highest analytical result. 

(iv) Systems which have 3 consecutive annual samples with no detection of a contaminant may apply 
to the State for a waiver as specified in paragraph (h)(6) of this section. 

(v) If monitoring results in detection of one or more of certain related contaminants (aldicarb, 
aldicarb sulfone, aldicarb sulfoxide and heptachlor, heptachlor epoxide), then subsequent 
monitoring shall analyze for all related contaminants. 
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Atrazine (Continued) 

(7) If an organic contaminant listed in § 141.61(c) is detected (as defined by paragraph (h)(18) of this 
section) in any sample, then: 

(i) Each system must monitor quarterly at each sampling point which resulted in detection. 

(ii) The State may decrease the quarterly monitoring requirement specified in paragraph (h)(7)(i) of 
this section provided it has determined that the system is reliably and consistently below the 
maximum contaminant level. In no case shall the State make this determination unless a 
groundwater system takes a minimum of two quarterly samples and a surface water system takes 
a minimum of four quarterly samples. 

(iii) After the State determines the system is reliably and consistently below the maximum 
contaminant level the State may allow the system to monitor annually. Systems which monitor 
annually must monitor during the quarter that previously yielded the highest analytical result. 

(iv) Systems which have three consecutive annual samples with no detection of a contaminant may 
apply to the State for a waiver as specified in paragraph (h)(6) of this section. 

(v) If monitoring results in detection of one or more of certain related contaminants (aldicarb, aldicarb 
sulfone, aldicarb sulfoxide and heptachlor, heptachlor epoxide), then subsequent monitoring shall 
analyze for all related contaminants. 

(8) Systems which violate the requirements of § 141.61(c) as determined by paragraph (h)(11) of this 
section must monitor quarterly. After a minimum of four quarterly samples show the system is in 
compliance and the State determines the system is reliably and consistently below the MCL, as 
specified in paragraph (h)(11) of this section, the system shall monitor at the frequency specified in 
paragraph (h)(7)(iii) of this section. 

(9) The State may require a confirmation sample for positive or negative results. If a confirmation sample 
is required by the State, the result must be averaged with the first sampling result and the average 
used for the compliance determination as specified by paragraph (h)(11) of this section. States have 
discretion to delete results of obvious sampling errors from this calculation. 

(10) The State may reduce the total number of samples a system must analyze by allowing the use of 
compositing. Composite samples from a maximum of five sampling points are allowed, provided that 
the detection limit of the method used for analysis is less than one-fifth of the MCL. Compositing of 
samples must be done in the laboratory and analyzed within 14 days of sample collection. 

(i) If the concentration in the composite sample detects one or more contaminants listed in § 
141.61(c), then a follow-up sample must be taken within 14 days at each sampling point included 
in the composite, and be analyzed for that contaminant. 

(ii) If duplicates of the original sample taken from each sampling point used in the composite sample 
are available, the system may use these instead of resampling. The duplicates must be analyzed 
and the results reported to the State within 14 days after completion of the composite analysis or 
before the holding time for the initial sample is exceeded whichever is sooner. 

(iii) If the population served by the system is >3,300 persons, then compositing may only be 
permitted by the State at sampling points within a single system. In systems serving ≤3,300 
persons, the State may permit compositing among different systems provided the 5-sample limit 
is maintained. 

(15) The State may increase the required monitoring frequency, where necessary, to detect variations 
within the system (e.g., fluctuations in concentration due to seasonal use, changes in water source). 

(16) Each public water system shall monitor at the time designated by the State within each compliance 
period. 
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In order to assess the occurrence of contaminants suspected to impact drinking water, the 
USEPA established an UCM program. The initial UCM round took place between 1988 and 1993, 
when 62 contaminants were monitored in 40 states.  The resulting data became part of the 
Unregulated Contaminant Monitoring Information System (URCIS). The second round of UCM 
occurred between 1993 and 1997 and included data from 35 states of 48 (then) unregulated 
contaminants. In 1996, the SDWA was amended and the UCM program was significantly revised 
and a new Unregulated Contaminant Monitoring Regulation (UCMR) established. Contaminants 
detected under the UCMR must be reported to customers in a Consumer Confidence Report 
issued by the system and reviewed by the state.  The EPA is required to review and update the 
UCMR every five years. The first UCMR (UCMR1) was issued in September 1999 and the second 
UCMR (UCMR2) was issued in January 2007. UCMR data are entered into the National 
Contaminant Occurrence Database (NCOD). The UCMR3 is currently in development and will 
likely include steroid hormones, organic perfluorinated compounds (PFCs), and other CECs. 
While the UCMR is generally based on the CCL, this is not always the case. The primary 
exception involves compounds included within an analytical method. For instance, even though 
perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS) are the only PFCs 
specifically included in the CCL3, it is expected that the UCMR PFC list will include other PFCs 
that are simultaneously monitored using USEPA method 537. Therefore, while the UCMR 
generally follows the CCL, it often contains other compounds that are simultaneously measured 
using the methods employed.     

 
2.4 California Specific Regulations of Drinking Water and Water Reuse  

Under USEPA granted primacy, the state of California has the authority to uphold the 
provisions of the Safe Drinking Water Act and to enforce all related federal standards. While the 
state is not permitted (without special exemption) to relax the drinking water standards of the 
Safe Drinking Water Act, the state may develop and enforce additional and/or more stringent 
requirements. The State of California has a long-standing history of developing rigorous 
standards beyond the requirements of the USEPA. The CDPH enforces both the federal and 
state drinking water regulations through the drinking water program (DWP) within the Division 
of Drinking Water and Environmental Management. Field operations branches are responsible 
for water regulation enforcement and work with the USEPA, the SWRCB, the Regional Water 
Quality Control Boards (RWQCBs), and other interested parties to achieve regulatory goals. A 
monitoring and evaluation unit exists under the technical programs branch, which collects 
results from analytical laboratories and reports subsequent drinking water quality data that 
meets the USEPA’s data reporting requirements. The contaminants with enforceable standards 
in California are generally comparable to those mandated by the USEPA, albeit at times 
California regulations are more stringent. However, there are several contaminants regulated 
by the State of California for which no federal standard currently exists (Table 2.1). Considering 
the charge of this Panel, these chemicals were not considered CECs since they are already 
regulated in the State of California. 

California administers a state unregulated contaminant monitoring rule program (Table 
2.2), which requires routine monitoring and reporting. The State of California also has 
established a series of notification levels for 29 unregulated contaminants (Table 2.3). 
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Interestingly, besides notification compounds that are also listed in the California UCMRs, these 
contaminants are not part of mandated monitoring programs, nor is reporting to the public 
mandated, but it is recommended. Notification levels are established by the State using health-
based criteria described in detail at 
http://www.cdph.ca.gov/certlic/drinkingwater/Documents/Notificationlevels/NotificationLevels.pdf. 
Thus, contaminants listed in Tables 2.2 and 2.3 were considered CECs. 

 
Table 2.1. Contaminants regulated in California, but not by USEPA. 

 

Contaminant CA MCL 
(mg/L) 

1,1-Dichloroethane 0.005 

1,3-Dichloropropene 0.0005 

Methyl-tert-butyl ether (MTBE) 0.013 

1,1,2,2-Tetrachloroethane 0.001 

Trichlorofluoromethane 0.15 

1,1,2-Trichloro-1,2,2-trifluoroethane 1.2 

Bentazon 0.018 

Molinate 0.02 

Thiobencarb 0.07 

Perchlorate 0.006 

 

 

Table 2.2. California Unregulated Contaminant Monitoring Requirements for Drinking Water. 

 

Contaminant Detection Limit for Reporting 
(μg/L) 

Boron 100 

Chromium-6 1 

Dichlorodifluoromethane 0.5 

Ethyl tertiary butyl ether 3 

Tertiary amyl methyl ether 3 

Tertiary butyl alcohol 2 

1,2,3-Trichloropropane 0.005 

Vanadium 3 

 

http://www.cdph.ca.gov/certlic/drinkingwater/Documents/Notificationlevels/NotificationLevels.pdf


CEC Panel FINAL REPORT – June 2010  Section 2 

 17 

Table 2.3. California notification substances and levels. 
 

 
Compound Notification Level (mg/L) 

 1    Boron   1   

 2    n-Butylbenzene   0.26   

 3    sec-Butylbenzene   0.26   

 4    tert-Butylbenzene   0.26   

 5    Carbon disulfide   0.16   

 6    Chlorate   0.8   

 7    2-Chlorotoluene   0.14   

 8    4-Chlorotoluene   0.14   

 9    Dichlorodifluoromethane (Freon 12) 1   

 10    1,4-Dioxane   0.003   

 11    Ethylene glycol 14   

 12    Formaldehyde   0.1   

 13    HMX   0.35   

 14    Isopropylbenzene   0.77   

 15    Manganese   0.5   

 16    Methyl isobutyl ketone (MIBK)   0.12   

 17    Naphthalene   0.017   

 18   N-Nitrosodiethyamine (NDEA)  0.00001   

 19   N-Nitrosodimethylamine (NDMA)  0.00001   

 20   N-Nitrosodi-n-propylamine (NDPA)  0.00001   

 21    Propachlor   0.09   

 22    n-Propylbenzene   0.26   

 23    RDX   0.0003  

 24    Tertiary butyl alcohol (TBA)   0.012   

 25    1,2,3-Trichloropropane (1,2,3-TCP) 0.000005  

 26    1,2,4-Trimethylbenzene   0.33   

 27    1,3,5-Trimethylbenzene   0.33   

 28    2,4,6-Trinitrotoluene (TNT)   0.001   

 29    Vanadium   0.05   
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As discussed in Section 3, draft regulations have been established for groundwater recharge 
with recycled water. These draft regulations require that monitoring for all primary and 
secondary MCLs take place as well as testing for total nitrogen (TN) and total organic carbon 
(TOC). Additionally, the draft groundwater recharge regulations suggest quarterly monitoring 
for priority toxic pollutants listed in the State of California’s Water Quality Standards, chemicals 
with State notification levels (Table 2.3), and additional constituent monitoring as specified by 
the State. The requirements for additional constituent monitoring are provided in Endnote 4 
and 5 of the draft regulations. Endnote 5 suggests that indicators of wastewater be monitored, 
which may include unregulated compounds, such as pharmaceuticals, endocrine disruptors, 
personal care products, and “other indicators of the presence of municipal wastewater as 
specified by CDPH”. 
(http://www.cdph.ca.gov/HealthInfo/environhealth/water/Pages/Waterrecycling.aspx). 

 

http://www.cdph.ca.gov/HealthInfo/environhealth/water/Pages/Waterrecycling.aspx
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3.0 Water Reuse Practices in California, Assurance of Plant Performance, and 
Current Monitoring Requirements 

3.1 Introduction 

 Water reclamation, recycling, and reuse are integral components of water resource 
planning and management. In the past, the driving motivation for water reuse was to 
supplement scarce resources and to provide a means of avoiding effluent disposal into surface 
waters. With increased water demand brought on by continued drought and increasing 
population, recycled wastewater is now considered an important water resource. Non-potable 
and potable use of recycled water can enable communities to maximize and extend the use of 
limited water resources. 

Utilization of appropriately treated wastewater as alternative and/or supplemental water 
sources to increase the supply of high quality water for potable uses includes applications such 
as: 

 Landscape irrigation (e.g., parks, golf courses, residential); 

 Agricultural irrigation (e.g., crops, commercial); 

 Industrial uses (e.g., cooling towers, construction);  

 Urban non-potable (e.g., toilet flushing, fire fighting); 

 Potable water uses (e.g., blending in reservoirs, blending in groundwater, direct use); 
and 

 Recreational/environmental uses (e.g., lakes, marshes, stream flow augmentation). 

 
The purpose of this section is to provide a summary of the following key items. A more 

detailed discussion can be found in Appendices E (CDPH Draft Groundwater Recharge 
Regulations), F (Recycled Water Case Examples), G (Concept of Reliability), and H (Pretreatment 
Regulatory Authority for Source Control). 

 
3.2 Current Levels of Water Recycling and Future Resource Demands  

For nearly a century, recycled water has been used intentionally as a non-potable water 
supply source in California. The implementation of reclamation projects has increased 
significantly even in the face of regulatory, economic, and social constraints. In 1989, reuse of 
municipal wastewater in California was estimated at 325,000 acre-feet per year2. In 2002 the 
SWRCB conducted a comprehensive statewide survey of municipal facilities that focused on 
documenting the current levels of non-potable reuse of treated municipal wastewater. The 
results of the 2002 survey indicated that, as of the end of 2001, approximately 525,000 acre-
feet per year of recycled water was used in California.  More recent SWRCB data indicate that 

                                                      
2
One acre-foot is equivalent to approximately 325,851 gallons of water. 
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during 2009 approximately 646,100 acre-feet per year of recycled water was used (WateReuse, 
2010). A summary of the statewide survey is shown in Figure 3.1 suggesting that the top three 
reuses are for agricultural uses (37%), landscape irrigation (18%), and groundwater recharge 
and seawater intrusion barrier uses (27%). At the present time, estimates indicate that about 8 
to 10 percent of municipal wastewater is recycled in planned reuse projects. Estimates 
regarding future reuse indicate that California has the potential to recycle an additional 1.4 to 
1.6 million acre-feet per year of water by the year 2030 (WateReuse, 2010).    

 

 
 

Figure 3.1 Types of recycled water use in California as a percentage of annual use, 2009 (Source: 
WateReuse, 2010). 

 
 
3.3 Current Water Recycling Regulations, Criteria and Policy  

 Recycled wastewater in California is mainly regulated by three state agencies:  the 
Department of Public Health (DPH), the SWRCB, and the nine RWQCB. The SWRCB and the 
RWQCBs have the primary responsibility for the protection and enhancement of the waters of 
the State. The SWRCB also has the primary responsibility for administering water rights. The 
DPH has the authority and responsibility to establish public health criteria for wastewater 
reclamation, including groundwater recharge, and reviews all proposals and plans for such 
projects throughout the state. Local health agencies and water districts can develop policies 
and programs, which are more stringent than those specified by the DPH.  

 State statutes and regulations pertaining to the use of recycled water in California can be 
found in the California Water Code (CWC), California Code of Regulations (CCR), and California 
Health and Safety Code. Water quality control plans (basin plans) may also contain the recycled 
water use policy of individual RWQCB. The DPH Wastewater Reclamation Criteria governing 
various uses other than indirect potable reuse are contained in Title 22, Division 4 of the CCR. A 
summary of the Title 22 criteria is presented in Table 3.1.   
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Table 3.1 .Summary of California Department of Public Health Water Recycling Treatment Requirements. 

 

Purpose of Use Treatment Requirement 

Orchards and Vineyards (no contact with edible 
crops), Nonfood bearing Trees, Fodder or Fiber 
Crops, Seed Crops (not eaten by humans), Food 
Crops (with additional pathogen treatment for crop), 
and Flushing Sanitary Sewers 

 

Cemeteries, Freeway Landscaping, Gold Courses 
(restricted access), Ornamental Nursery stock, Sod 
farms, Pasture (milk animals), Non-edible vegetation 
(controlled access), Commercial/Industrial cooling 
towers (with drift reduction), Landscape 
impoundments (no decorative fountains), Industrial 
boiler feed,  Soil compaction, Mixing concrete, Dust 
control (roads), Cleaning roads, Nonstructural fire 
fighting 

 

Food crops  (edible portion above ground – no 
contact), Restricted recreational impoundments  

 
Food crops, Parks and playgrounds, School yards, 
Residential landscaping, Golf courses (unrestricted), 
Commercial/Industrial cooling towers (mist devices), 
Unrestricted recreational impoundments (with 
specific pathogen monitoring), Flushing toilet and 
urinals, Structural fire fighting, Decorative fountains, 
Artificial snow making, Commercial car washes, 
Groundwater recharge (with additional treatment –
see CDPH draft groundwater regulations)  

Undisinfected Secondary
a
 

 

 

 

 

Disinfected Secondary, 23 MPN/100 mL
b
 

 

 

 

 

 

 

 

Disinfected Secondary, 2.2 MPN/100 mL
c
 

 

Disinfected Tertiary
d
  

 

 

 

 

 
 

 
a Undisinfected secondary treatment: means oxidized wastewater (Oxidized wastewater: wastewater in which the organic matter has been 

stabilized, is non-putrescible, and contains dissolved oxygen.) 
b Disinfected secondary – 23 recycled water:  oxidized and disinfected so that the median concentration of total coliform bacteria does not 

exceed a most probable number of 23 per 100 mL and the MPN does not exceed 240 per 100 mL in more than one sample in any 30 day 
period. 

c Disinfected secondary – 2.2 recycled water: oxidized and disinfected so that the median concentration of total coliform bacteria does not 
exceed a most probable number of 2.2 per 100 mL and the MPN does not exceed 23 per 100 mL in more than one sample in any 30 day 
period. 

d Disinfected tertiary recycled water: means a filtered and disinfected wastewater that meets a CT (product of total chlorine residual and modal 
contact time measured at the same point) value of not less than 450 mg-min. per L at all times with a modal contact time of 90 min. 
(based on peak dry weather design flow) or provides a 5 log removal/reduction of MS2 F-specific phage or polio virus or similar virus).  

Filtered wastewater: an oxidized, coagulated, clarified wastewater which has been passed through natural undisturbed soils of filter media, 
such as sand or diatomaceous earth, so that the turbidity, as determined by an approved laboratory method, does not exceed 5 
turbidity units more than 5 percent of the time during any 24-hour period, an average of 2 NTU during a 24-hour period, and does not 
exceed a 10 NTU at any time; in addition, the filter may not exceed 5 gals per min per square foot (traveling bridge automatic backwash 
filters cannot exceed 2 gals per min).  

(Source:  Summary adapted from California Code of Regulations, Title 22, Division 4, Division of Environmental Health.) 
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A summary of the August 2008 CDPH draft groundwater Recharge Reuse Regulations is 
presented in Table 3.2. The draft recharge regulations address the supplementing of 
groundwater through surface or subsurface application of treated municipal wastewater prior 
to eventual extraction via drinking water wells for potable use. The proposed California criteria 
for groundwater recharge reflect a cautious approach toward potential short- and long-term 
health concerns. The recently adopted State Water Board Recycled Water Policy and supporting 
information provide further definition and clarification to the collaborative roles of the SWRCB, 
the CDPH, and the RWQCBs as they relate to permitting and monitoring water recycling 
projects. The Policy and supporting documentation clearly and appropriately envision that the 
RWQCBs rely on the DPH’s expertise for establishing permit conditions (e.g., monitoring 
conditions) needed to protect human health. A more detailed discussion of the key California 
regulations (both current and draft), criteria, and policy that impact reuse projects is provided 
in Appendix E. 

 To protect public drinking water supplies, the CDPH also has regulations to prevent cross 
connections between recycled water systems and potable water systems. Local health 
departments and the CDPH have enforcement authority over these cross connection 
prevention regulations. The California Building Standards Commission sets plumbing standards 
for use of recycled water in buildings and industries. 

 
Table 3.2. Summary of CDPH Draft Groundwater Recharge Regulations (DRAFT August 5, 2008). 

 

Contaminant Reuse Applications 

 Surface Spreading Direct Injection 

Pathogenic microorganisms
1 

 

 

Secondary treatment  

Filtration  

Disinfection 

 

 

Retention time underground 

 

Control nitrogen compounds 

 

Regulated contaminants 

 

 

Recycled Water Contribution RWC) 

Initial Operation 

 

 

Max RWC  

 

Disinfected secondary and filtered 
recycled water  

 

Oxidized 

<2 NTU 

<5-log virus inactivation, < 2.2 total 
coliform per 100 mL 

 

Min. 6 months  

 

Three options –  e.g., Option1 = TN 
< 5 mg/L as N in reuse water 

 

Meet all drinking water MCLs  

 

20 to <50% depends on % RO and 
AOP treatment and NDMA and 
1,4-dioxane reduction 

 

Up to 100% (see note 2) plus TOC 
performance over 20 weeks meets 
TOC max ≤ 0.5 mg/L / RWC proposed 

(may be increased with DPH 
approval) 

Disinfected secondary and filtered 
recycled water  

 

Same 

 

 

 

 

Same 

 

Same 

 

 

Same 

 

<50% plus all RW treated with RO 
and AOP treatment and NDMA and 
1,4-dioxane reduction 

 

Up to 100% (see note 2) plus TOC 
performance over 20 weeks meets     

TOC max ≤ 0.5 mg/L / RWC proposed 

(may be increased with DPH 
approval) 
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Table 3.2. Continued 

 

Contaminant Reuse Applications 

 Surface Spreading Direct Injection 

Diluent Water 

 

 

 

 

Downgradient Monitoring 

 

 

 

Source Control and Outreach 

 

Implement monitoring program, 
quality < to primary MCLs, meet 
nitrogen controls, determine 
volume for credit 

 

One location at least 3 months 
prior to domestic supply 

Additional points including each 
aquifer 

 

Industrial monitoring and 
investigation 

 

Same 

 

 

 

Same 

 

 

 

 

Same 

Unregulated Contaminants Data collection for 
pharmaceuticals, endocrine 
disruptors and other indicators 

Data collection for 
pharmaceuticals, endocrine 
disruptors and other indicators 

 

Notes: 
1-See Title 22 requiremenst for disinfected filtered (section 60301.320) and tertiary (section 60302.230) recycled water. 
2 Increasing RWC requires meeting a number of criteria.  For example, a health effects study must be conducted including and exposure 
assessment, review of available epidemiology studies, and evaluation of individual and cumulative effects of regulated contaminants. 

BOD = biochemical oxygen demand; NA = not applicable; NTU = nephelometric turbidity unit; RWC = the percent recycled water contribution in 
groundwater extracted by drinking-water wells; SAT = soil aquifer treatment; TOC = total organic carbon. 

 

3.4 Key Criteria Governing Planned Indirect Potable Reuse Projects  

 In May 1993, a California Potable Reuse Committee was formed by the DPH and the 
California Department of Water Resources to look into the feasibility and safety of potable 
reuse of recycled water following advanced treatment. The members concluded that planned 
indirect potable reuse of advanced treated recycled water using surface water reservoirs is 
feasible if six specific criteria were addressed (see Appendix E).  

In addition, in 1998, the National Research Council (NRC) evaluated the issue of potable 
reuse and provided specific recommendations to consider in both evaluating and governing 
such uses (NRC, 1998). Although the NRC recommendations are not specifically part of the 
California water reclamation and reuse laws, regulations and/or guidance, their 
recommendations are relevant to the specific questions being addressed by this Panel. In 
addition, the recommendations of the NRC are consistent with and expand the 
recommendations contained in the 1996 California surface water augmentation framework 
document (see Appendix E).  

The 1998 NRC report recommended that water agencies considering potable reuse fully 
evaluate the potential public health impacts from the microbial pathogens and chemical 
contaminants found or likely to be found in treated wastewater through special 
microbiological, chemical, toxicological, and epidemiological studies, monitoring programs, risk 
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assessments, and system reliability assessments. In addition, the 1998 NRC report also provided 
some specific recommendations regarding reliability and quality assurance.  

The NRC recommendations (NRC, 1998) combined with current practices and recommended 
criteria established in the State of California, as summarized below, should be carefully 
considered for evaluating and managing potable reuse projects: 

1. Utilize the Best Available Technology in advanced wastewater treatment;  

2. Utilize multiple, independent barriers, especially using robust barriers for the removal of 
microbiological contaminants3; 

3. Employ quantitative reliability assessments to monitor and assess performance and 
reliability (i.e., both process control and final water quality monitoring and assessment 
as well as assessment of mechanical reliability);  

4. Avoid “short-circuiting” in environmental buffers including the maintenance of 
appropriate retention times within the environmental buffers as well as the 
maintenance of water quality in the environmental buffer (i.e., groundwater and/or 
reservoir(s)); 

5. Provide for alternative means for disposing of the production water that does not meet 
required standards; 

6. Develop and implement a well coordinated public health surveillance systems to 
document and possibly provide early warning of any adverse health events associated 
with the ingestion of recycled water;  

7. Implement an effective source control program; 

8. Operators of water reclamation facilities should receive training and certification 
regarding the principles of operation of advanced treatment processes, the pathogenic 
organisms likely to be found in wastewaters, and the relative effectiveness of the 
various treatment processes in reducing contaminants concentrations; 

9. Utilize an independent monitoring oversight authority to provide a third-party review of 
operational, regulatory, and environmental issues associated with the indirect potable 
project;  

10. Institute formal channels of coordination between water reclamation agencies, 
regulatory agencies, and agencies responsible for public water systems; and 

11. Establish a CEC monitoring program that incorporates use of indicators and surrogates 
to represent CECs. 

                                                      
3
 See Sakaji et al. (Sakaji, 1998) and Olivieri et al. (Olivieri, 1999) for additional detail and discussion. 
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3.5 Recycled Water - Case Examples  

In California, a typically arid and semi-arid region of the United States, groundwater 
recharge and irrigation are major reuse options to a) replenish existing groundwater resources, 
b) to protect groundwater resources via salt water intrusion barriers and c) to augment and 
replace potable water currently used for agricultural and irrigation practices.  Summaries were 
prepared for two of the oldest and largest groundwater recharge projects in the nation 
(Appendix F): 

 Orange County Water District - Groundwater Replenishment via direct injection and 
surface spreading; and  

 Montebello Forebay Groundwater Recharge Project via surface spreading. 

 
In addition, summaries were provided for two of the many ongoing landscape irrigation 

projects (i.e., City of Sunnyvale and City of San Jose); summaries are presented in Appendix F. 
The summaries briefly cover how the projects address many of the above key factors and 
identify how to locate additional information. A summary of the basic treatment processes/ 
operations typically utilized for wastewater treatment is provided in Table 3.3 and a summary 
of those processes used for groundwater recharge reuse projects and for landscape irrigation 
projects is provided in Table 3.4. 

 

Table 3.3. General summary of wastewater treatment processes/operations. (Adapted from Asano et al. 
2006). 

 
Treatment Level Description 

Preliminary Removal of wastewater constituents, such as rags, 
sticks, grit etc., that may cause operational problems 

Primary Partial removal of suspended solids and organics 

Advanced primary Enhanced removal of suspended solids and organic 
matter (via chemical addition and filtration) 

Secondary  Removal of biodegradable organic matter (in 
solution or suspension) and suspended solids 

Secondary with nutrient removal Secondary treatment with additional processes 
designed specifically to remove nutrients such as 
nitrogen and phosphorous  

Tertiary  Removal of residual suspended solids through use 
of granular/surface filtration and/or membranes  

Advanced Removal of total dissolved solids and trace 
constituents (nutrient removal may be included as 
well) with membranes and advanced oxidation 
processes 

Disinfection Removal/destruction of microbial pathogens 
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Table 3.4. General summary of water reuse application and wastewater treatment processes/operations. 

 
Water Reuse Application Treatment Level 

Groundwater Recharge – Surface Water Spreading 

 

 

Preliminary, primary, secondary (sometimes 
advanced secondary), nutrient removal, tertiary, 
disinfection 

Groundwater Recharge – Direct Injection Preliminary, primary, secondary (sometimes 
advanced secondary), nutrient removal, tertiary, 
advanced, and disinfection 

Landscape Irrigation – Restricted   Preliminary, primary, secondary (sometimes 
advanced secondary), disinfection  

Landscape Irrigation - Unrestricted  Preliminary, primary, secondary (sometimes 
advanced secondary), tertiary, disinfection 

 

In summary, all of the above key potable reuse project elements (see Section 3.4), except 
for the items noted below, appear to be adequately addressed as part of current State 
regulations and guidance.  

 (#3) Employ quantitative reliability assessments to monitor and assess performance and 
reliability (i.e., both process control and final water quality monitoring and assessment 
as well as assessment of mechanical reliability);  

 (#6) Develop and implement a well coordinated public health surveillance systems to 
document and possibly provide early warning of any adverse health events associated 
with the ingestion of recycled water;  

 (#9) Utilize an independent monitoring oversight authority to provide a third-party 
review of operational, regulatory, and environmental issues associated with the project; 
and 

 (#11) Establish a CEC monitoring program that incorporates use of indicators and/or 
surrogates to represent suites of CECs. 

 

Further, based on the preliminary review of two major indirect reuse projects, the above 
key elements appear to be required and implemented for indirect potable reuse. Additional 
information on key elements that are not currently being adequately addressed (numbers 3, 6, 
9 and 11 above) is provided in Appendices G and H.   
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4.0 Toxicological Relevance of CECs in Recycled Water to Human Health 

4.1 Introduction 

 The purpose of this section is to introduce the Panel’s process for determining the 
toxicological relevance of CECs in recycled water with respect to human health.  

To evaluate the known toxicological information for CECs regarding human health, the 
Panel reviewed results of many of the key studies conducted over the past 40 years on the 
toxicological relevance to humans of CECs in recycled water. Those studies include 
epidemiological studies examining effects in humans directly, studies in which laboratory 
animals have been exposed to recycled water, bio-analytical studies, and risk assessments that 
predict the potential effects to humans of individual CECs in recycled water (see summary in 
Appendix I). While almost all of these studies report the absence of adverse effects from 
recycled water use, the epidemiological studies are, in the Panel’s view, particularly important. 
The earliest studies were conducted in the 1970’s and 1980’s with a focus on the potential 
effects of disinfection byproducts produced following disinfection of drinking water with 
chlorine. Some of those early studies report an increase in bladder and rectal cancers possibly 
associated with chlorination byproducts (see summary in Sloss, 1996). More recent studies of 
recycled water find, essentially, no adverse health outcomes in populations using recycled 
water (see summary in Appendix I). Though epidemiologic studies, like any study, can have 
limitations, in particular the influence of confounding factors such as uncertainty about the 
exact amount of exposure to recycled water (NRC, 1998) or whether long term exposure to 
CECs over generations can affect human health through as yet unknown (e.g., epigenetic) 
mechanisms, the fact that different research groups have investigated different populations 
over the course of several decades, and reported similar results, is important. The 
epidemiologic studies are particularly important, as are laboratory animal and bio-analytical 
studies, because they look at exposure to the entire mixture of chemicals that may be present 
in recycled water. That mixture includes chemicals, both naturally occurring and man-made, 
that have not been identified yet, as well as the interactions between those that have been 
previously identified. In summary, the Panel views the predominantly negative findings of the 
combined epidemiological studies, laboratory rodent studies, bio-analytical screening studies 
and risk assessments as several concordant lines of evidence that appropriately treated 
recycled water represents a safe source of water to supplement potable drinking water 
supplies. 

 
4.2 Screening Process to Assess Toxicological Relevance of CECs  

The predominantly negative findings described above do not preclude the need to monitor 
recycled water to assure its continued safety. One reason for monitoring is the potential 
presence of newly developed compounds that were not being manufactured at the time the 
above mentioned epidemiological studies were conducted. As described in Section 2 of this 
report, CECs to be considered in monitoring programs can be selected for a variety of reasons, 
only one of which is the potential to pose a risk to human health (i.e., toxicological relevance). 
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To identify CECs that have the greatest potential to be of toxicological relevance to human 
health, the Panel developed a screening process.   

In principle, the screening process is simple: MECs or PECs of CECs at the POM for a 
particular water reuse scenario are compared to monitoring trigger levels (MTLs) developed for 
that particular water reuse scenario. This process is referred to as the “Exposure Screening 
MEC/MTL” (Figure 4.1). If the concentration of a CEC is less than the MTL, then that CEC is 
assumed to have little or no potential to pose an unacceptable potential risk to human health 
and does not need to be included in a CEC monitoring program, at least with respect to its 
toxicological relevance (such a CEC would fall into the “No Concern” box following the 
“Exposure Screening” flowchart, Figure 4.1). Note that such CECs may yet be included in a 
monitoring program because they may be relevant as indicator compounds (see the “Suitable 
Indicator” portion of the flowchart). If the concentration of a CEC is equal to or greater than the 
MTL, then the CEC should be considered for inclusion in a monitoring program (such a CEC 
would fall into the “Concern” box following the “Exposure Screening” flowchart). The Panel 
believes it is important to stress that exceedance of a MTL by a measured or predicted 
concentration at the POM does not mean that the CEC poses a health risk to humans. The 
comparison to MTLs should be conducted at the POM, not the point of exposure. As discussed 
in Section 5, CEC concentrations at the point of exposure are likely to be many fold lower than 
they are at the POM.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Conceptual exposure screening of CEC regarding relevance in recycled water. 
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Central to the screening process is the development of MTLs for each water reuse scenario. 
It is important to note that the process the Panel has recommended should not be viewed as a 
process to establish drinking water or surface water criteria for CECs, though such a process 
may bear substantial similarity to the MTL process. Regulatory agencies already have policies 
and procedures in place to develop such criteria. The chemical and toxicological properties of 
compounds currently viewed as CECs are not unique compared to substances already 
considered by the State for regulatory purposes and thus CECs are amenable to the typical 
criteria development process. When regulatory agencies determine that a drinking or surface 
water criterion is required for a compound viewed as a CEC, it is the Panel’s view that already 
established policies and procedures should be followed (see discussion in Section 2).    

In recommending an approach to develop MTLs, an overriding goal for the Panel was that 
the MTLs be sufficiently low (i.e., conservative) such that a compound which has the potential 
to pose a human health concern can be identified and included as a potential CEC for 
monitoring. The Panel could have recommended that California simply using drinking water 
benchmarks (e.g., either drinking water standards, criteria or screening levels) already derived 
by various regulatory agencies and peer-reviewed publications to establish MTLs (see Appendix 
J for such a compilation). However, the Panel felt reliance upon existing benchmarks assembled 
from a variety of sources had at least two important drawbacks that must be kept in mind when 
developing MTLs.  

First, it leads to the establishment of MTLs derived using different assumptions, which, in 
turn, means that neither the Panel nor anyone using such MTLs understands how conservative 
each one is; at least not without reviewing the details of the derivation of each of the drinking 
water benchmarks upon which the MTLs are based. The protectiveness of a benchmark will 
depend upon the information and methods used to derive it. For example, selecting the lowest 
of two benchmarks without a detailed review of their derivation precludes the user from 
understanding the basis and protectiveness of each benchmark. The lower of the two 
benchmarks may be based upon new toxicological information not available to the authors who 
derived the higher benchmark. Alternatively, both groups of authors may have used the same 
toxicity information but differed in their application of uncertainty factors for various reasons. 
While having a set of benchmarks that vary in their level of protectiveness is not inherently 
unacceptable, the Panel sees value to having MTLs that have a common level of protectiveness 
because they are derived using a common set of exposure and toxicity assumptions. 

The second drawback of using existing drinking water benchmarks to establish MTLs is that 
such benchmarks are only available for CECs that we know about today. A substance that is not 
known today, but is “discovered” or predicted to be in recycled water in the future (referred to 
as a “known unknown” in the flowchart in Figure 2.1), would not likely have a literature-based 
benchmark. For such a compound, a monitoring program would not have a drinking water 
benchmark to which to compare a measured concentration and, thus, the MEC or PEC of the 
compound could not be compared to an MTL.   
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In lieu of recommending use of already established drinking water benchmarks from several 
sources, the Panel reviewed the recent literature on CECs to determine whether anyone had 
published a relatively simple process that could be used to derive screening level allowable 
daily intakes (ADIs) that could then be employed to establish MTLs that have a common 
derivation and a consistent and transparent level of protectiveness. In the course of that review 
the Panel identified a process to derive screening level acceptable daily intakes (ADIs) for a 
variety of CECs in recycled water presented in “Identifying Hormonally Active Compounds, 
Pharmaceuticals, and Personal Care Product Ingredients of Health Concern from Potential 
Presence in Water Intended for Indirect Potable Reuse” (Snyder et al. 2010). Snyder et al. (2010) 
developed a common process based upon a simple decision tree, readily available information 
for each compound, and a common set of assumptions to establish a screening level ADI (Figure 
4.2). The process of deriving an MTL is presented in the boxes in the flowchart to the left of the 
Exposure Screening box (Figure 4.1). In that process the flowchart asks whether toxicity data to 
develop an ADI are available, and if they are, the process described below is followed to 
develop a MTL4. 

 

Figure 4.2 .Final Decision Tree for PNEC Determining Scheme for New and Emerging Contaminants (adopted 
from Snyder et al. 2010).  

                                                      
4
 The Panel wishes to point out that if the State of California, or another agency that the State of California 

recognizes as having the expertise to develop ADIs, has developed an ADI for a potential CEC, then the Panel 
recommends that the ADI developed by the State should be used to establish an MTL in lieu of the process 
described in Snyder et al. (2010). 
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A critical consideration in the Panel’s decision to recommend this approach in the 
derivation of screening level ADIs was the involvement of a large number of potential 
stakeholders and experts in the development of the screening benchmark derivation process 
described in Snyder et al. (2010) and what the Panel viewed as a comprehensive review of 
available screening benchmark derivation methods undertaken by the authors and 
stakeholders involved in Snyder et al. (2010).  

The overall goal of Snyder et al. (2010) was to review methodologies for developing 
screening level human health risk-based criteria for CECs potentially present in recycled water. 
Snyder et al. (2010) identified several methodologies that could be used to develop screening 
level benchmarks for protection of public health. From those methodologies, the authors, in 
conjunction with outside experts devised a simple, conservative approach for the development 
of health risk-based guidelines for CECs “that selects the lowest calculated level (i.e., most 
protective of human health) from several possible risk assessment schemes”. The Panel 
emphasized that application of the decision tree in the development of screening values should 
be performed in consultation with appropriate experts in toxicology and risk assessment. A 
summary of the proposed approach is excerpted from the Executive Summary of Snyder et al. 
(2010) below:  

1) If the chemical is a pharmaceutical, select the lowest value from among comparison 
values derived using the following processes: 

a) Divide the therapeutic dose (on a milligram per kilogram body weight basis, based 
upon range of doses and age groups for which the chemical is prescribed) by a 
default uncertainty factor (UF) of 3,000; divide by an additional UF of 10 if the 
compound is either a non-genotoxic carcinogen or an endocrine disrupting 
compounds (EDC). 

b) Divide the literature-based no observed adverse effect level (NOAEL) by a default UF 
of 1,000 or the lowest observed adverse effect level (LOAEL) by a default UF of 
3,000; divide by an additional UF of 10 if the compound is either a non-genotoxic 
carcinogen or an EDC. 

c) If the compound is a genotoxic carcinogen and tumor incidence data are available, 
develop a slope factor and establish a comparison value assuming a de minimis 
cancer risk of 1 in 1,000,000. 

d) If the compound is a genotoxic carcinogen and no tumor incidence data are 
available, use the lower of the virtually safe dose derived using the method of Gaylor 
and Gold (1998) or the threshold of toxicological concern (TTC). 

2) If the chemical is not a pharmaceutical and either a literature-based NOAEL or LOAEL 
can be identified or the chemical is a genotoxic carcinogen, set guidelines based on 
toxicological data following (b), (c), and (d), above. 

3) If the chemical is not a pharmaceutical but does not have either a literature-based 
NOAEL or LOAEL or there is no evidence it is a genotoxic carcinogen, derive a screening 
level based on the TTC. 
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The Panel appreciates that the process described in Snyder et al. (2010) is meant for 
derivation of screening level human health risk-based criteria for CECs present in drinking 
water. Though not specifically derived for application as MTLs, the Panel believes the 
conservative nature of the toxicity benchmarks using the process described in Snyder et al. 
(2010), will result in trigger levels that are sufficiently conservative to be used as MTLs for the 
protection of human health. Though the Snyder et al. (2010) process was developed for PPCPs, 
and endocrine disrupting compounds, the Panel believes the process can be applied to most 
any CEC for calculating an MTL. Users of the MTLs derived using the Snyder et al. (2010) process 
should note that MTLs so derived did not consider protection of ecological receptors.   

The authors of Snyder at al. (2010) also “recommended that if the risk assessor/ toxicologist 
notes a “flag” suggesting the potential for unique toxicity (e.g., evidence from toxicity studies 
suggests the compound is a frank teratogen at the lowest dose, or the compound is a 
chemotherapy agent), then the compound should be subject to a full compound-specific risk 
analysis rather than using the rapid screening approach presented here”. In developing MTLs 
for the initial list of candidate CECs to be monitored, the Panel came across another situation in 
which the screening level ADIs derived using the Snyder et al. (2010) decision tree likely need 
additional careful consideration before being used to derive MTLs. The specific example is the 
screening ADI value to use for 17β-estradiol (E2); E2 has been extensively studied, and its 
potential effects are well understood. Several expert scientific bodies and regulatory agencies 
have conducted reviews of available toxicity information (see text box below). Some of those 
agencies have selected an ADI that is about 2000-fold higher than the screening level ADI 
determined using the decision tree presented in Snyder et al. (2010) (see text box below).  

Toxicity of 17β-estradiol (E2) 

Various expert bodies have recognized that E2 is a potential carcinogen (WHO 2000 (Toxicological Evaluation of Certain 

Veterinary Drug Residues in Food. WHO Food Additive Series: 43. Estradiol-17β, Progesterone, and Testosterone. 

Geneva:World Health Organization, International Programmeon Chemical Safety. available:  

http://www.inchem.org/documents/jecfa/jecmono/v43jec01.htm); EPA in the CCL dossiers.) Sufficient data are 

available to derive a cancer slope factor (SF) of 39 (mg/kg-day)
-1 

(CA
 
OEHHA, 1992 as cited in Snyder et al. (2010)).  

Based on the carcinogenic potential of E2 and the availability of the SF, the Snyder et al. (2010) decision tree would lead 

to the establishment of a screening level ADI of 0.000026 µg/kg-day assuming an allowable excess lifetime cancer risk of 

one in one million (1x10
-6

). This screening level ADI is nearly 2000 times lower than the ADI of 0.05 µg/kg-day  

recommended by Australia (Australian-guideline,  2008), the only regulatory body that has proposed a drinking water 
guideline for E2 (see Appendix J summarizing drinking water levels identified by the Panel). The Australia drinking water 
guideline is based upon the WHO ADI, which is derived through the application of a total uncertainty factor of 100 to a 
NOAEL of 0.3 mg/day derived from studies of changes in several hormone-dependent parameters in postmenopausal 
women. Given the WHO’s review of the extensive toxicity and epidemiological data available for E2 and decision to base 
the ADI for E2 on a non-cancer endpoint, the Expert Panel believes the WHO ADI is just as valid as the ADI that can be 
derived using the CA

 
OEHHA slope factor and a 1x10

-6
 excess lifetime cancer risk level. Indeed, given that the mechanism 

by which tumors were induced in the rodent study, upon which cancer slope factor is based, has no equivalent in humans, 
the WHO ADI may have greater validity than the ADI based upon the results of the rodent cancer bioassay. The decision 
of which ADI to use for compounds like E2 is one of science policy and needs to consider previous precedent as well as 
new precedent such a decision establishes. For example, if the ADI based upon the CA

 
OEHHA slope factor is accepted 

and used to establish MTLs, it likely means that many common dietary items that contain naturally occurring E2 and other 
steroid estrogens (e.g., dairy products and various meats) pose a potentially unacceptable cancer risk.  If WHO’s ADI is 
used, consumption of many common dietary items would not pose an unacceptable risk. 

http://www.inchem.org/documents/jecfa/jecmono/v43jec01.htm
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The Expert Panel was not prepared to conduct a detailed review of the toxicity of E2 (or any 
other CECs) for the purpose of developing an initial list of CECs to monitor. The Panel believes 
that as part of developing a final monitoring list of CECs to protect public health, substantial 
discrepancies between screening level ADIs should be carefully examined and understood 
before a final ADI is selected for the derivation of a MTL.  

 
4.3 Derivation of Monitoring Trigger Levels  

Two unique sets of MTLs need to be developed, corresponding to the differing degree of 
exposure to recycled water this is assumed to be associated with the two water reuse practices 
described in Section 1. To translate the screening level ADIs derived using the decision tree 
presented in Snyder et al. (2010) into MTLs for potable water use (as opposed to landscape 
irrigation), the Panel adopted the common approach of assuming that an adult female (the 
Panel recommends using USEPA’s default bodyweight of 60 kilograms for an adult female) 
consumes 2 liters of water per day for her entire life. Thus, the screening level ADI is multiplied 
by 60 kg and divided by 2 liters/person-day (Equation 4.1) to derive the potable water use MTL. 
The Panel also believes that it is appropriate to incorporate a relative source contribution (RSC) 
in the derivation of MTLs, though the value of the RSC should depend upon the particular CEC. 
For CECs where drinking water is assumed to be the dominant exposure pathway for the 
general public, an RSC of 1.0 is appropriate (e.g., human use pharmaceuticals, disinfection 
byproducts). While CECs with many potential environmental sources other than drinking water 
(e.g., most pesticides) should employ an RSC of less than 1.0. Given the Panel’s resource and 
time constraints, it did not feel it was in a position to recommend specific RSCs for specific 
classes of CECs, but recommends that the next Panel review the development of RSCs and 
recommend values to use in the development of MTLs.   

 
Monitoring Trigger Level = Screening Level ADI x 60 kg x RSC   (Eq. 4.1) 

               2 L/day   

 
To derive the MTLs for landscape irrigation, the Panel recommends using the same 

assumptions as used to derive MTLs for potable use, with the exception of the water ingestion 
rate. Few quantitative data were available to rigorously characterize the potential incidental 
ingestion rate of water for the landscape irrigation scenario. The Panel started by reviewing 
information compiled by USEPA on incidental water ingestion while swimming (USEPA 2009a) 
as a possible source to develop an estimate of the amount of water consumed in the landscape 
irrigation scenario. The Panel felt that in most cases, measured amounts of water ingested 
incidentally while swimming would be substantially greater than the amounts of water that 
might be ingested from landscape irrigation. USEPA reports that children ingest more water 
while swimming than adults (mean and upper 95% ingestion rates of 37 and 49 mL/hour for 
children and 16 and 20 mL/hour for adults). The Panel also reviewed studies reporting on the 
proportion of daily drinking water intake due to park irrigation (Cooper & Olivieri, 1998; Sakaji 
et al. 1998; Ottoson & Stenstrom, 2003). These studies form a better basis from which to 
estimate incidental irrigation exposures than studies of swimming exposures. Based upon these 



CEC Panel FINAL REPORT – June 2010  Section 4 

 34 

studies, the Panel selected a high-end incidental ingestion fraction of 1% of total daily water 
intake being comprised of intake from landscape irrigation.  Given that total daily intake is 
assumed to be 2 liters per day for the derivation of potable use MTLs, the intake for landscape 
irrigation was assumed to be 0.02 liters, or 20 milliliters per day. Thus, the expected ingestion 
of water associated with landscape irrigation is 100-fold lower than that assumed for potable 
water use. As this is the only difference between the two sets of MTLs for the two reuse 
practices, the landscape irrigation MTLs are 100 times greater than the MTLs for potable reuse. 

 
4.3.1 Initial Monitoring Trigger Levels  

The Panel believes that MTLs derived following the process described above, will be 
consistent, protective of public health, and when compared to representative MECs or PECs, 
will lead to the identification of CECs that should be included in a monitoring program based 
upon their toxicological relevance to humans. The Panel also recognizes that full 
implementation of its recommended process (including derivation of MTLs) will require more 
resources than were available to the Panel. For example, review of available toxicity 
information for each CEC and the use of that information in the flow chart presented in Snyder 
et al. (2010) (see Figure 4.2), could take significant effort and toxicological expertise and 
judgment. The Panel had the required expertise and judgment, but simply did not have the 
time and resources at its disposal to conduct such a review. That being said, the Panel did want 
to develop an understanding of whether its recommended framework of comparing measured 
(or predicted) environmental concentrations to MTLs to identify CECs to include in a monitoring 
program was workable. The Panel also felt it was within their charge to provide regulators with 
initial MTLs so that monitoring could be readily implemented. 

To conduct such an evaluation, the Panel derived initial MTLs based upon drinking water 
benchmarks available from seven different sources (see Appendix J). These sources include 
drinking water benchmarks developed by three regulatory agencies (USEPA, CDPH, Australian 
Environmental Protection and Heritage Council), two papers recently published in scientific 
journals (Schwab et al. 2005, Schriks et al. 2009), and two peer-reviewed research reports 
focusing on the development of benchmarks for CECs (Snyder et al. 2008a, Cotruvo et al. 2010). 
The key assumptions each of the sources used to derive drinking water benchmarks are 
described in Appendix J. 

When information from these seven sources is combined, drinking water benchmarks are 
presented for 418 compounds that might be classified as CECs. The majority of CECs have only a 
single benchmark (i.e., only one of the sources presents a benchmark for that CEC) that could 
be used as the MTL. However, several CECs, often the pharmaceuticals, have multiple 
benchmarks. For some CECs, those benchmarks are similar (e.g., codeine, ethinyl estradiol, di-n-
butyl phthalate) while for others, the benchmarks can be quite disparate (e.g., ibuprofen, DDE, 
DEET, triclosan).  

The drinking water benchmark selected as the basis for the initial MTLs for each compound 
is highlighted (in pink) in Appendix J. As described in Appendix J footnotes, the benchmarks are 
derived by combining assumptions about the toxicity of a CEC and potential exposure to the 
CEC via consumption of drinking water. The assumptions about the potential toxicity of a 
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particular CEC and how the ADI for that particular CEC was derived can vary between the 
sources of the benchmarks. Details of those differences are available from the sources. 
Summarizing the derivation of the allowable intake for each benchmark was beyond the scope 
of the Panel’s charge.  

Just as assumptions about the potential toxicity of a CEC can vary between sources, so can 
assumptions about exposure. For example, some sources developed drinking water 
benchmarks based upon a child’s bodyweight and assumed a lower total water consumption 
rate; however, on a per kilogram basis, a child’s intake is actually greater than an adult’s 
(Schwab et al. 2005) while the others were based on an adult’s total intake. All sources 
assumed long-term daily consumption of drinking water. Some sources consistently adjusted 
the allowed exposure from drinking water to account for potential exposure from other 
pathways (e.g., diet) while other sources did not. This adjustment is referred to as the RSC in 
the US. The Australian guidelines refer to it as a proportion (P) from water (Australian-
guideline, 2008). The decision to use or not use an RSC (or P) does not appear to be random. 
For example, Schwab et al. (2005) did not use an RSC because the only CECs they evaluated 
were pharmaceuticals. For people not taking a particular pharmaceutical for therapeutic use, 
drinking water exposure likely comprises the majority of such a person’s daily exposure, so the 
need to account for exposure from other sources is compound-specific. In other words, the RSC 
can be set to 1.0 for pharmaceuticals. The Australian guidelines similarly use a P of 1.0 for 
human-use pharmaceuticals but use a P of 0.1 for other compounds, including pharmaceuticals 
with veterinary or agricultural applications (Australian-guideline, 2008). 

Given the conservative nature of the initial MTL selection process followed by the Panel for 
the purposes of this report, the Panel believes the MTLs highlighted in Appendix J are health 
protective and appropriate for use in a CEC monitoring program. This report refers to those 
MTLs as “initial MTLs” to emphasize that they were derived using a process distinct from the 
one recommended by the Panel. A key part of the framework proposed by the Panel is periodic 
review of the MTLs and MECs/PECs used to identify indicator CECs to be included in a 
monitoring program. The Panel anticipates that as part of such future periodic reviews, the 
“initial MTLs” presented in this report will be updated following the Panel’s recommended 
approach.  

 
4.4 What are the appropriate constituents to be monitored? 

Establishing MTLs is only half of the information required to determine whether a CEC 
needs to be included in a monitoring program. The other set of needed information is on 
predicted or MECs of the CEC in recycled water. CECs with concentrations that have been 
documented to be below MTLs would not need to be included in a monitoring program; CECs 
with concentrations above the MTL would be candidates to be included in or retained in a 
monitoring program.   

Currently, baseline monitoring data exist for many CECs occurring in recycled water in 
California. These data can be compared to MTLs to determine whether to include them in a 
monitoring program. The Panel has summarized available data relevant to California in Section 
5. 
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The Panel believes it is critical to emphasize that if measured or predicted concentrations of 
a CEC at the POM exceed respective MTLs, exceedences do not necessarily indicate the 
existence of public health risks. The MTLs and their application in the Panel’s proposed 
framework are developed to be conservative and used only for the purpose of prioritizing CECs 
for monitoring. The Panel’s proposed framework is not designed to develop estimates of 
potential risk from CECs in recycled water.   
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5.0 Measured Environmental Concentrations of CECs in Recycled Water in 
California 

5.1 Introduction 

In order to compile MECs of CECs in recycled water in California, the Panel developed a 
survey that considered sampling locations, analytical methods used for their quantification, 
frequencies, and treatment processes for the water reuse practices of interest to the State 
Board. The survey was provided to stakeholders in California and CEC monitoring data were 
requested for the time period 2007 and 2009. The Panel received survey responses from water 
and wastewater utilities in California, the WateReuse Association of California, commercial 
laboratories, and research laboratories that were engaged in monitoring efforts for CECs in 
recycled water projects in California. The Panel screened these databases and summarized the 
occurrence of CECs in these reuse applications. 

While the Panel acknowledged that these reuse practices engage conventional and 
advanced water treatment processes that result in very different water qualities, the Panel 
chose a conservative approach in comparing MECs to MTLs (see Section 4) for the exposure 
screening that was proposed to select indicator CECs for monitoring programs. This 
conservative measure considered a water quality that represents a secondary or tertiary 
treated effluent quality meeting California’s Title 22 requirements for urban irrigation. These 
MECs were also chosen as a representative wastewater effluent quality for groundwater 
recharge practices using surface spreading or direct injection into a potable aquifer. The Panel 
acknowledged that the water quality for these groundwater recharge reuse practices both at 
the POM after travel through the vadose zone and the aquifer, as well as at the point of 
exposure, are likely to be many-fold lower. Nevertheless, the effect of additional water 
treatment on water quality was not considered in deriving MECs and the most conservative 
values were used in the prioritization. Given that no standardized methods were used to 
generate MEC data in the past, the Panel also recognizes that variability and false 
positive/negative issues likely confound the MECs considered for the development of the 
Panel’s CEC priority list. 

 

5.2 Occurrence of CECs in Recycled Water in California 

MECs for CCL3 and non-CCL3 CECs (see Section 2) representing secondary or tertiary 
effluent qualities were compiled (representative of a Title 22 water quality as noted above) to 
represent the final MEC for the purposes of the reports analysis. The combined effluent 
qualities represent a conservative estimate of MECs for groundwater recharge projects since 
treatment credit is not including additional advanced water treatment processes, dilution in the 
aquifer, and/or incidental treatment in the soil-aquifer system. In addition, the combined 
secondary/tertiary effluent derived MEC represents a reasonable and conservative estimate for 
all landscape irrigation uses (restricted and non-restricted). Further, if CECs were reported as 
not detected, the method detection limit (MDL) was adopted as the lowest occurrence value, a 
conservative assumption. For each CEC various statistical parameters were determined as 
illustrated for ibuprofen in Figure 5.1. Distribution plots for all CECs are listed in Appendix K. For 
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the CCL3 and non-CCL3 CECs, the 90th percentile of each MEC was recorded. Table 5.1 
summarizes the 90th percentile MECs of CCL3 CECs. The 90th percentiles of MECs for non-CCL3 
CECs are summarized in Table 5.2. Of the chemicals considered by the Panel, MECs for eight 
CCL3 CECs were compiled. For the non-CCL3 CECs, 43 MECs were identified.  

 

 

Figure 5.1. Statistical assessment of CCL3 CECs and non-CCL3 CECs (e.g., ibuprofen). 
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Table 5.1. 90
th

 percentile MECs of CCL3 CECs in recycled water. 

 

CCL3 CECs  Occurrence in 
Recycled Water 
Secondary/Tertiary 
Treated (ng/L) 

MTLs MEC/MTL 

  
Potable 
Reuse 

Irrigation 
Potable 
Reuse 

Irrigation 

17 -estradiol 1 3.5E+02 3.5E+03 0.00 0.00 

17 -estradiol 8.4 9.0E-01 9.0E+00 9.33 0.93 

Erythromycin 113 4.9E+03 4.9E+04 0.02 0.00 

Estrone 73 3.5E+02 3.5E+03 0.21 0.02 

Ethinyl estradiol 1 2.8E+02 2.8E+03 0.00 0.00 

PFOA 28 1.1E+03 1.1E+04 0.03 0.00 

PFOS 90 2.0E+02 2.0E+03 0.45 0.05 

Nitrosodiethylamine 
(NDMA) 

68 1.0E+01 1.0E+02 6.80 0.68 

 
 
 
Table 5.2. 90

th
 percentile MECs of non-CCL3 CECs in recycled water. 

 

Non-CCL3 CECs Occurrence in 
Recycled Water 
Secondary/Tertiary 
Treated (ng/L) 

MTLs MEC/MTL 

  
Potable Reuse Irrigation 

Potable 
Reuse 

Irrigation 

4-Nonylphenol 161 500000 5000000 0.00 0.00 

Atorvastatin 79 5000 50000  0.02 0.00 

Diclofenac 230 1800 18000 0.13 0.01 

Epitestosterone  
(cis-Testosterone) 

10 N/A N/A   

Ketoprofen 43 3500 35000 0.01 0.00 

Metoprolol 246 25000 250000 0.01 0.00 

o-hydroxy 
atorvastatin 

10 N/A N/A   

Propanolol 25 40000 400000   

Simvastatin 
hydroxyacid 

25 N/A N/A   

Sucralose 26390 N/A N/A 0.02 0.00 

Acetaminophen 550 350000 3500000 0.00 0.00 

Bisphenol A 286 350000 3500000 0.00 0.00 

Dilantin 217 N/A N/A   

Tris (2-chloroethyl) 
phosphate (TCEP) 

688 2500 25000 0.28 0.03 
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Table 5.2. Continued 

 

Non-CCL3 CECs Occurrence in 
Recycled Water 
Secondary/Tertiary 
Treated (ng/L) 

MTLs MEC/MTL 

  Potable 
Reuse 

Irrigation Potable Reuse Irrigation 

4-octylphenol 207 50000 500000 0.00 0.00 

Atenolol 1780 70000 700000 0.03 0.00 

Azithromycin 1200 3900 39000 0.31 0.03 

Caffeine 900 350 3500 2.57 0.26 

Carbamazepine 400 1000 10000 0.40 0.04 

Ciprofloxacin 100 17000 170000 0.01 0.00 

Clofibric acid 820 30000 300000 0.03 0.00 

DEET 1520 2500 25000 0.61 0.06 

Diethylstilbestrol 10 N/A N/A   

Fluoxetine (Prozac) 31 10000 100000 0.00 0.00 

Furosemide 38 N/A N/A   

Gemfibrozil 3550 45000 450000 0.08 0.01 

Ibuprofen 500 34000 340000 0.01 0.00 

Iopromide 2174 750000 7500000 0.00 0.00 

Meprobamate 430 260000 2600000 0.00 0.00 

Methylisothio-
cyanate 

114 N/A N/A   

Musk ketone 25 350000 3500000 0.00 0.00 

Naproxen 851 220000 2200000 0.00 0.00 

Primidone 264 N/A N/A   

Progesterone 18 110000 1100000 0.00 0.00 

Salicylic acid 110 29000 290000 0.00 0.00 

Sulfamethoxazole 1400 35000 350000 0.04 0.00 

TCDPP 296 1000000 10000000 0.00 0.00 

TCPP 5920 N/A N/A   

Testosterone (trans-
Testosterone) 

37 7000 70000 0.01 0.00 

Triclocarban 223 N/A N/A   

Triclosan 485 350 3500 1.39 0.14 

Trimethoprim 112 61000 610000 0.00 0.00 

Warfarin 16 2300 23000 0.01 0.00 
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5.3 Recommendations to Gather Additional MEC Data for CECs in California  

As stated above, the MEC data considered by the Panel for CECs in California secondary and 
tertiary treated effluents were provided by various stakeholders in response to the occurrence 
survey the Panel distributed. It is important to note that the survey was unspecific regarding 
which CEC MECs were requested. Thus, the survey resulted in some data gaps regarding MEC 
data for all CCL3 CECs. For non-CCL3 CECs, MECs were reported for those CECs that were part of 
previously developed analytical methods and previous monitoring strategies for CECs in 
recycled water in California. Thus, the list of non-CCL3 CECs for which MECs were available does 
not represent the entire spectrum of non-CCL3 CECs potentially present in recycled water or 
the most important CECs based on production volume, use practice, or physicochemical 
properties suggesting a high likelihood of occurrence in recycled water.  

In order to fill data gaps for CECs with limited or no information on MECs in California, the 
Panel suggests that the State conduct a more thorough review of CECs likely to occur in 
recycled water using MEC and PEC data from peer-reviewed literature and occurrence studies 
outside California. Those CECs that exhibit MEC/MTL ratios above “1” could be placed on a 
secondary monitoring list of CECs with low frequency of occurrence to confirm either presence 
or absence of these CECs in recycled water in California. In addition, this secondary monitoring 
list could be populated by CCL3 CECs that exhibit a relatively low MTL (less than 500 ng/L) 
based on the Panel’s summary of available drinking water benchmarks. Table 5.3 lists CCL3 
CECs with no MEC information for California and with initial MTLs of less than 500 ng/L. The 
Panel conducted a cursory review of production data and physicochemical properties and 
suggested a few CCL3 CECs that could be targeted through a secondary monitoring program to 
confirm their presence or absence in recycled water. Results of these efforts, along with the 
monitoring data collected as part of the Panel’s recommended program, can provide the basis 
for revising the proposed initial monitoring list during the next, and each, triennial review. 

 
Table 5.3. CCL3 CECs with MTLs of less than 500 ng/L and no MECs in Recycled Water in California. 90

th 

percentile MECs in recycled water were not available for these CECs. 
 

CCL3 CECs MTLs 
Potable 
Reuse 
(ng/L) 

Note Recommend 
Gathering MEC 

Information 

Available 
Analytical 

Method 

1,2,3-Trichloropropane 5.0E+00 On Cal UCMR Yes Yes 

1,3-Butadiene 1.0E+01 High production volume industrial 
chemical; rapid volatility from 
water; log Kow 1.99; main uptake 
via lungs in humans 

No No 

3-Hydroxycarbofuran 4.2E+02 Pesticide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 

4,4'-Methylenedianiline 2.2E+01 Industrial chemical; only slightly 
soluble in water; low likelihood to 
occur in recycled water at elevated 
concentrations 

No No 
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Table 5.3. Continued 

CCL3 CECs MTLs 
Potable 
Reuse 
(ng/L) 

Note Recommend 
Gathering MEC 

Information 

Available 
Analytical 

Method 

Acetamide 5.0E+02 Industrial chemical; well water 
soluble; low likelihood to occur in 
recycled water at elevated 
concentrations 

No No 

Alachlor OA 4.0E+02 Herbicide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 

Alpha.-
Hexachlorocyclohexane 

6.0E+00 Pesticide; log Kow 3.78; low 
likelihood to occur in recycled 
water at elevated concentrations 

No No 

Benzyl chloride 2.0E+02 Not stable in activated 
sludge/wastewater 

No No 

Cumene hydroperoxide 7.6E+01 very unstable in the environment; 
unlikely to persist during water 
reclamation 

No No 

Dicrotophos 4.9E+02 Insecticide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 

Equilenin 3.5E+02 Steroid replacement drug; low 
likelihood to occur in recycled 
water at elevated concentrations 

No No 

Equilin 3.5E+02 Steroid replacement drug; low 
likelihood to occur in recycled 
water at elevated concentrations 

No No 

Estriol 3.5E+02 Steroid; occurrence in recycled 
water usually less than 5 ng/L 

No No 

Ethylene oxide 1.1E+02 intermediate industrial chemical; 
unstable in the environment; low 
likelihood to occur in recycled 
water at elevated concentrations 

No No 

Hydrazine 1.0E+01 Industrial chemical Yes Yes 

Mestranol 2.8E+02 Synthetic estrogen; low likelihood 
to occur in recycled water at 
elevated concentrations 

No No 

Nitroglycerin 2.9E+02 Industrial chemical; low likelihood 
to occur in recycled water at 
elevated concentrations 

No No 

N-nitrosopyrrolidine 
(NPYR) 

2.0E+01 Low likelihood to occur in recycled 
water at elevated concentrations 

No No 

Norethindrone 4.0E+01 Contraceptive drug; low likelihood 
to occur in recycled water at 
elevated concentrations 

No No 

o-Toluidine 1.9E+02 Herbicide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 

Oxirane, methyl- 2.3E+02 Industrial chemical; low likelihood 
to occur in recycled water at 
elevated concentrations 

No No 

Oxydemeton-methyl 9.1E+02 Insecticide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 
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Table 5.3. Continued 

 
CCL3 CECs MTLs 

Potable 
Reuse 
(ng/L) 

Note Recommend 
Gathering MEC 

Information 

Available 
Analytical 

Method 

Oxyfluorfen 4.8E+02 Herbicide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 

Profenofos 3.5E+02 Pesticide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 

Quinoline 1.0E+01 Industrial chemical Yes Yes 

RDX (Hexahydro-1,3,5-
trinitro-1,3,5-triazine) 

3.0E+02 Explosive residue; low likelihood 
to occur in recycled water at 
elevated concentrations 

No No 

Terbufos 3.5E+02 Pesticide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 

Terbufos sulfone 3.5E+02 Pesticide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 

Triphenyltin hydroxide 
(TPTH) 

1.9E+00 Pesticide; low likelihood to occur 
in recycled water at elevated 
concentrations 

No No 
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6.0 Screening Unknown CECs in Recycled Water to Assess Exposure 

6.1 Introduction 

For unknown CECs (e.g., CECs that may be unknowingly released into the environment and for 
which there are currently no known methods for their quantification), biological monitoring or 
chemical screening methods could be used to quantify effects/equivalents or identify unknown 
chemicals and thus may offer an additional 
safeguard for human health (Figure 6.1). The 
main advantage of bioassays is that they are 
able to detect the presence of chemicals 
based on their bioactivity rather than on their 
detection by analytical chemistry. For this to 
work, however, robust, reproducible and high 
throughput assays need to be developed. This 
is one of the primary ways to evaluate the 
occurrence of unknown/unknown CECs. It is 
imperative to specify the endpoint of concern 
in this process. Several examples are 
discussed in Appendix L. The USEPA has 
focused on compounds that interfere with 
estrogen, androgen and thyroid hormone 
responses. Other potential candidate 
endpoints of concern include genotoxicity and 
steroidogenesis.  

Figure 6.1. Screening approach for unknown 
unknown CECs in recycled water. 

Advances in qualitative determination of unknown chemicals (i.e., chemical screening with 
high resolution mass spectroscopy) can be linked with biological effects to help identify agents, 
which can subsequently be evaluated for exposure or effects (see Figure 6.1). For biological 
monitoring there are both in vivo and in vitro assays that have been developed. Their use in the 
regulatory context was the topic of a debate sponsored by the Society of Toxicology in 2008 
(Hartung & Daston, 2009). There are advantages and disadvantages to each of these monitoring 
systems, and possibly a mixture of both in vivo and in vitro testing systems will be necessary. A 
distinct advantage of in vivo tests is that the chemical exposure is to the whole animal where all 
the tissues and toxicity pathways are equally exposed; however, the apical end points that are 
normally measured including survival, reproduction and growth, are not specific to a 
mechanism of action (Snyder et al. 2008b). However, research has demonstrated that 
sometimes extreme differences within and among species confound the use of in vivo assays 
especially for prediction of human health (i.e., strain differences in mice and rats seen during 
the Endocrine Disruptors Screening Program (EDSP)). In vitro tests, on the other hand, are very 
specific for a mechanism of action, but are artificial and non-physiological representations of 
what may be happening in vivo. Novel methods in genomics and proteomics show great 
promise to bridge the advantages of both the in vivo and in vitro methods, by allowing the 
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exposures to occur in vivo but analyzing the effects to provide mechanistic information through 
systems toxicology approaches. The genomics and proteomics methods promise to be sensitive 
and accurate in determining the presence of possible hazards to human health in drinking 
water and conversely of clearly showing no observable toxicity. Genomic methods are still 
being developed in research laboratories and are not currently used for regulatory applications. 
However, USEPA has proposed that these methods will eventually be utilized to “fingerprint” 
biological responses (adverse outcome pathways) (Bennett et al., 2010), which will be 
employed in risk assessment paradigms in the future. 

An added benefit of bioassays is they can be used to measure synergistic, additive, and 
antagonistic interactions between compounds that may be present in a mixture. Toxicity 
evaluations based on single-chemical analyses will generally miss the synergistic, additive, or 
antagonistic potential found in mixtures, thus providing a false sense of security or false 
indication of a potential risk. 

 
6.2 Bioanalytical Screening Tools  

Bioanalytical screens can be used to develop integrated approaches that a capable of targeting 
a wide spectrum of CECs, and when calibrated, may also provide some indication of adverse 
effect. While analytical chemistry requires the availability of standards and known compounds, 
bioanalytical methods include the ability to integrate unknown compounds and mixture 
interactions within an environmental matrix. In addition, with recent movement by regulatory 
agencies toward a mode of action approach in risk assessment paradigms, several bioassays 
have recently been developed for the screening of compounds for specific biological target 
activities such as dioxin-like activity (e.g., toxic equivalents (TEQ)) (Van den-Berg et al., 1998), 
endocrine responses (i.e., estrogen, androgen, thyroid), and genotoxicity.     

After nearly 10 years of scientific evaluation, the USEPA has recently announced the EDSP 
Tier I bioassays recommended by the Endocrine Disruptors Screening and Testing Advisory 
Committee (EDSTAC) (USEPA, 2009b). Many of these methods are now commercially available 
and have adequate quality assurance guidelines (Table 6.1). In the case of chemicals that 
behave as hormone mimics (e.g., estrogen, androgen, thyroid hormones), these bioassays could 
play a role as an initial screening tool for CECs, which could then direct specific analytical 
chemistry measurements. For example, if a water sample failed to demonstrate estrogenic 
activity in one of the assays described below, the measurement of difficult analytes by 
analytical methods may not be necessary. Thus, exposure could be described in terms of 
equivalent mass of estradiol (EEQ) per unit volume using a derived EEQ value (e.g., ng/L). 
Although a high degree of correlation exists between chemically derived EEQ and bioassay 
derived EEQ (Figure 6.2), false negatives may be present in a small percentage of samples that 
possess antagonistic activity, particularly in the yeast estrogen screening (YES) assay. 
Consequently, it may be prudent to use more than one bioassay (MCF-7; ER-CALUX) to confirm 
negative results.  
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Table 6.1. Commercially available EDSP Tier I Bioassays with adequate quality assurance guidelines 

(http://www.epa.gov/scipoly/oscpendo/pubs/assayvalidation/tier1battery.htm#assays). 
 

Test Environment Endpoint Assay 

In vitro Estrogen receptor (ER) binding Rat uterine cytosol 

 
Estrogen receptor (hER ) transcriptional 
activation Human cell line (HeLA-9903) 

 Androgen receptor (AR) binding Rat prostate cytosol 

 Steriodogenesis Human cell line (H295R) 

 Aromatase Human recombinant microsomes 

   

In vivo  Uterotrophic (rat) 

  Pubertal female (rat) 

  Pubertal male (rat) 

  Amphibian metamorphosis (frog) 

  
Fish short-term reproduction 

 

 

 

 

 
Figure 6.2. Correlation between chemically estimated EEQs and bioassay EEQs (Bulloch et al., in press). 
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6.3 Strengths and Weaknesses of Bioassays 

6.3.1 Strengths 

 Bioassays that measure binding equivalency (i.e., EEQ, TEQ) are very powerful because they 
can be used to determine the bioactivity of a water extract on specific biological endpoints and, 
thus provide information on unknown/unknown CECs. Seldom are chemicals present alone and 
rarely can all be measured. For example, an extract that contains low levels of 17α-ethinyl 
estradiol EE2 (< 1 ng/L), which by itself may be below the threshold for biological or toxic 
responses, and also other estrogenic chemicals that act via the same soluble sex steroid 
receptors, can increase the activity above the threshold (Brian et al., 2007). For maximum 
protection of human health, one needs to group chemicals by their modes of action and test 
them in bioassays that have been calibrated to mammalian toxicity in vivo and clearly 
distinguish biological effects attributed to potential mixtures. This is especially true if it is 
possible that unknown chemicals are present in the treated water.  

 Bioassays can be very useful to evaluate active constituents of unknown chemical structure 
in TIE methods. For this to be practical, high throughput in vitro assays should be used to 
reduce the amount of time required for TIE procedures. Some of the assays mentioned above 
can be done in a matter of hours.   

 Another important aspect of bioassays is that they can be used in mode of action 
assessments of individual chemicals and in cell-based assays to help distinguish agonist from 
antagonist activities. Some cell types also allow metabolism to occur within the test, thus 
including health assessment tests for potent metabolites of chemicals, which may on their own 
be much less toxic. Several in vitro bioassays have undergone round robin testing including 
those for estrogenic activity, steroidogenic impacts, and genotoxicity. The USEPA and the 
National Institute of Environmental Health Sciences/National Toxicology Program (NIEHS/NTP) 
are using these assays in screening tiers for testing purposes. 

 

6.3.2 Weaknesses 

While strengths include exposure assessment for unknown/unknown CECs, the primary 
weakness of using bioassays is the uncertainty surrounding the potential for quantifying 
adverse effects in humans associated with a positive response. Few of these bioassays have 
been calibrated to higher order effects (i.e., adverse effects in humans). There is a possibility of 
false positives especially for low concentrations of chemicals (i.e., in vitro the chemicals signal 
activity but in vivo they fail to do so, or vice versa). The most likely explanation for these 
inconsistencies is metabolism and whole organism integrated responses compared to specific 
bioassay response. In addition, extraction procedures have not been evaluated in round-robin 
intercalibration studies. For the most part, the in vitro assays rely on chemical extraction of the 
contaminants from the water column, without knowing if the extraction methods reliably 
obtain the chemical contaminant or not. For example, perchlorate would have been missed by 
these assays. And, there is uncertainty as to the proper volumes of water to extract to get an in 
vitro response and how these concentrations can be extrapolated to human health. 
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Few commercial testing companies currently have the equipment and trained staff to 
perform bioassays creating a significant need for training. But, this should not stop the process. 
It is likely that suppliers of the biological test systems and kits (such as Invitrogen) would 
provide courses for personnel in testing companies to teach them how to run the assays under 
GLP conditions. Alternatively, continuing education courses associated with the Society of 
Toxicology (SOT) or Society of Environmental Toxicology and Chemistry (SETAC) could provide 
this service. As with medical tests for human disease, commercial companies can hire medical 
technicians that are adequately trained to run the tests.  

Another short-term problem with bioassays is that many, particularly in vivo and microarray 
assays, still need to be vetted in round-robin studies to determine the limits of the 
methodology, the variability of response and the robustness and sensitivities of the assays. In 
addition, special emphasis should be placed on extraction procedures since most round robin 
tests were carried out on a common extract. This level of quality assurance/quality control 
(QA/QC) validation will require resources in parallel with other tests that are ongoing. While in 
the short run these additional resources will cost more than just performing chemical analyses, 
in the long run, the bioassays may help reduce the overall costs of monitoring reuse projects. In 
this scenario, the bioassays could indicate which analytical methods one must employ to 
identify the chemicals of greatest concern.    

Thus, bioassay methods hold great promise for monitoring the safety of recycled water. 
However, in the Panel’s view several steps of the process still need to be developed. These 
include: 

 Development of bioassay methods that measure the critical human health 
endpoints/mechanisms of action. Currently, bioassays measuring estrogenic effects 
appear closest to being ready. These should be implemented as soon as possible to 
begin evaluating the efficacy of bioassays in CEC monitoring; 

 Developing a trigger level for bioassay response linked to effects in humans. Again, given 
that human health ADIs exist of estrogen exposure and can be expressed on an 
estrogen-equivalent basis, suggests that at least for bioassays the measure estrogen 
response, relatively rapid development of human health-based trigger levels may be be 
possible. For full application of bioassay-based screening, such trigger levels would be 
needed for all key human health endpoints; and 

 Developing a response to the exceedance of a trigger level. The Panel believes such a 
response can take one of two forms. One response could be to conduct a TIE to identify 
the compound(s) responsible for the exceedance of the trigger. That compound(s) could 
then be included in the CEC monitoring program. Given that monitoring safety of water 
supplies still relies on compound-by-compound evaluations, this is the most likely near-
term response. An alternate response would be developing an understanding of how 
the measured biologic activity in water leaving a treatment plant is linked to treatment 
methods within the treatment plant. Such an understanding might lead to the reduction 
in biologic activity of an effluent through modifications in treatment methods, without 
the need to conduct chemical-specific measurements. 
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The Panel believes full implementation of bioassay screening methods is still several years 
away and, thus, the Panel is not recommending the adoption of such methods at this time. 
However, the Panel does recommend that development of such methods be given high priority 
and that the State should charge the next independent advisory panel with developing a pilot 
program that documents the efficacy of bioassays as monitoring tools, assuming bioassay 
methods are commercially available, and compares their predictions to those of a chemical-by-
chemical monitoring program.   

 
6.4 Quantifying Unknown Known CECs in Recycled Water 

Many of the compounds used in commerce, or that are known or suspected of being 
excreted by humans, occur at concentrations too low to be detected by currently available 
analytical methods. Such compounds can be included in the CEC screening process 
recommended by the Panel, if PECs can be developed (Figure 6.3). The Panel believes 
developing a process that allows for estimating the possible concentration of CECs in recycled 
water is key to determining whether compounds for which MECs are not available or for which 

available analytical detection limits are 
well above the MTL, have the potential to 
pose a human health risk. In concept, a 
process to develop screening level 
predicted concentrations of CECs in 
recycled water is fairly simple. One simply 
needs to know how much of the 
compound is used each year in a 
household or per capita, make an 
assumption about how much water a 
person or household uses every day, 
estimate the amount entering a 
treatment plant, decide how many 
possible loss mechanisms during the use, 
transport and treatment process one 
wants to account for, and then predict a 
concentration in recycled water. Hannah 
et al. (2009) describe such a process to 
develop PECs for ethinyl estradiol in US 
surface waters. 

Figure 6.3. Estimating PECs for unknown known CECs. 

 
The greatest challenge to implementing a production- or use-based model to predict 

concentrations of known unknowns in recycled water is developing an estimate of the mass of 
a compound used and released into the waste water system. Such data are available; for most 
compounds they just may not have been compiled in a readily accessible location. If the 
compound in question is in commerce, the amount sold every year should be available from 
manufacturers who know how much of compound they sell. If the compound in question is a 
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metabolite, information on its excretion may be available in the scientific literature or could be 
estimated based upon intake and information about metabolism.    

The value of developing a simple model to predict concentrations of compounds in reused 
water is that comparisons to MTLs can be conducted even for compounds that do not yet have 
analytical methods. The availability of such a production-based screening system would allow 
for the screening of far more compounds than we currently have analytical methods for.  
Results of such a screening analysis could then be used to prioritize the development of 
analytical methods for CECs. The Panel recommends that the State charge the next 
independent advisory panel with evaluating a production volume-based system to prioritize 
known unknown CECs for a monitoring program. 
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7.0 Prerequisites for Monitoring CECs in Recycled Water 

7.1 Background and Analytical Components for Monitoring CECs in Recycled 
Water 

Although the term “emerging contaminants” has often been applied to chemicals that have 
been recently detected in the environment, the analysis of EDCs and PPCPs has been ongoing 
for decades.  Despite several early reports of EDCs and pharmaceuticals in the environment, 
they received little attention until researchers in the United Kingdom and United States linked 
the occurrence of trace steroids to biological activity in fish and cellular bioassays (Desbrow et 
al., 1998; Routledge et al., 1998; Snyder et al., 2001) and the oft-cited study published in 2002 
by the US Geological Survey (Kolpin et al., 2002), titled “Pharmaceuticals, hormones, and other 
organic waste contaminants in US streams, 1999-2000: a national reconnaissance”. This latter 
manuscript reported summed steroid hormone concentrations as high as several µg/L and 
maximum EE2 and 19-norethisterone concentrations of 831 and 872 ng/L, respectively (Kolpin 
et al., 2002).  

These developments, along with advances in analytical instrumentation, have led to a rapid 
increase in the number of analytical techniques used to study steroid hormones and other 
exogenous agents such as PPCPs in water.  Analytical techniques have increased the sensitivity 
and accuracy of CEC analysis, allowing ultra-trace levels of a wide variety of contaminants to be 
identified and quantified in, for instance, US drinking water (Benotti et al., 2009; Quinones & 
Snyder, 2009).   

Because CECs represent an extremely broad spectrum of compounds, developing a single 
all-encompassing technique for their analysis is highly unlikely. These chemicals vary widely in 
their physico-chemical properties (e.g., polarity, molecular weight, pKa, water solubility, etc.) 
making analysis by traditional analytical techniques difficult. Additionally, the concentration of 

many CECs in the environment can be quite low, typically sub- g/L, which further increases the 
complexity of analysis by necessitating extraction and concentration steps. In general; however, 
a plan for the analysis of target CECs encompasses similar primary steps, including: sample 
collection/preservation, analysis, and quantification.  

 
7.2 Sample Collection/Preservation 

7.2.1 Sample Collection 

Due to the common use of pharmaceuticals, the ubiquitous nature of personal care 
products, and the common occurrence of nearly ubiquitous commercial products containing 
flame retardants, plasticizers, and other industrial chemicals, great care must be taken to avoid 
contamination of samples by samplers, sampling equipment and laboratory personnel.  
Communication between the laboratory and those collecting samples regarding the list of 
target compounds is important to help prevent contamination by identifying and eliminating 
possible undesired sources of target analytes. In general, nitrile gloves should be worn at all 
times during the collection and handling of samples to prevent contamination with personal 
care products applied directly to the skin (such as triclosan, DEET, and various sunscreen 
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agents). Similarly, smoking and handling or ingesting pharmaceuticals or caffeinated beverages 
should be avoided shortly before and during sampling programs designed to detect trace levels 
of PPCPs. To monitor background levels of the target CECs, travel blanks should always be 
included. 

It is generally recommended to collect samples in amber, glass bottles to prevent analyte 
loss due to photodegradation, contamination with various plasticizers, and adsorption to the 
walls of plastic sampling bottles (Vanderford et al., 2006). Special attention must be given to 
compounds such as fluorochemicals, which are known to be present in Teflon lined bottle caps 
and which can bind strongly to glass (Quinones & Snyder, 2009). Sample bottles should also be 
cleaned thoroughly with applicable solvents (e.g., water, methanol, acetone, dichloromethane, 
hexane) to ensure the cleanliness of the bottles prior to sampling. Furthermore, sampling 
equipment should be composed of materials such as stainless steel that will not leach target 
CECs and should be cleaned with solvent between sample locations to prevent cross 
contamination. 

 
7.2.2 Preservation 

At the time of collection, samples are generally preserved to reduce microbial degradation, 
hydrolysis, and adsorption of the target analytes. This is typically accomplished through 
lowered temperature and/or chemical preservatives. However, it must be noted that 
preservative selection depends greatly on the CECs selected for analysis. For example, some 
CECs may have an adverse reaction with a chemical preservative; therefore, it is advisable to 
test the target analytes with the selected preservative in a controlled experiment before using 
it in the field. 

After samples are collected, they should be cooled to prevent analyte degradation. This 
usually involves placing the sample in a cooler with ice while other samples are taken and when 
they are transported back to the laboratory. If samples are to be transported over long 
distances, it is recommended that blue ice be used to maintain sample temperature during 
shipment. Once samples have been received by the laboratory, they may then be stored at 4°C 
or less until analysis. It is strongly advised to conduct holding studies using the matrices of 
interest to verify the maximum holding time without degradation.   

Chemical preservatives are often used to prevent analyte degradation. Several have been 
commonly used including reducing the sample pH to 2 or below using either sulfuric 
(Vanderford et al., 2003) or hydrochloric acid (Hernando et al., 2006), adding formaldehyde to a 
final concentration between 1 – 4 percent (Baronti et al., 2000; Ferguson et al., 2001), or 
adding sodium azide to a final concentration of 1 g/L (Vanderford & Snyder, 2006). As stated 
above, care must be taken to ensure the preservative of choice does not interfere with the 
target analytes. For example, formaldehyde has been extensively used to preserve samples for 
steroid analysis; however, Vanderford et al. (2003) reported that using formaldehyde for the 
preservation of pharmaceuticals resulted in significant changes in their concentrations over 
time. 
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Although sample preservatives can reduce the amount of degradation that occurs before 
the samples are extracted and/or analyzed, it is recommended that samples be extracted as 
soon as possible after they are received. Long storage times can result in sample adsorption to 
both the bottle and suspended/dissolved organic matter in the sample. Typical holding times 
range from 24 to 7 days (Hernando et al., 2006; Miao & Metcalfe, 2003; Moldovan, 2006; Vieno 
et al., 2006). 

 
7.2.3 Residual Oxidant Quenching 

When collecting and analyzing samples from drinking water-treatment or potable reuse 
facilities, it is important to know whether residual oxidants, such as free chlorine, may be 
present. If the residual oxidants are not quenched, target analytes will continue to be exposed 
to chlorine until the samples are extracted. Analytes that are susceptible to oxidation will be 
further degraded due to this increase in contact time, leading to misinterpretation of analyte 
concentrations present at the time of sampling. Therefore, residual oxidants must be quenched 
using suitable chemical agents.  

Commonly used quenching agents include sodium thiosulfate (Acero et al., 2005), sodium 
sulfite (Ho et al., 2006), ammonium chloride (Pepich et al., 2004), and ascorbic acid (Ye et al., 
2007). However, researchers have found that some quenching agents react adversely with 
various target analytes (Trenholm et al., 2006; Ye et al., 2007). Therefore, it is essential that, 
like the preservation agents, tests are performed to ensure the selected quenching agent does 
not interfere with the target analytes. Furthermore, adverse reactions between preservatives 
and quenching agents should be explored, especially with regard to safety. 

 
7.3 Instrumental Analysis  

The combination of techniques of chromatographic separation and detection is the 
standard for detection of environmental contaminants. The two most powerful and most 
widely used combined techniques are gas chromatography-mass spectrometry (GC-MS) and 
liquid chromatography-mass spectrometry (LC-MS) due to their robustness, sensitivity and 
selectivity.   

 
7.3.1 GC-MS 

Because MS separates and detects an analyte based on mass to charge ratio (m/z), the 
compound must be charged (ionized) before it enters the MS. In GC-MS, there are two common 
ionization techniques: electron ionization (EI) and chemical ionization (CI). In EI, the GC column 
eluent is directed through a beam of electrons created by a filament that produces electrons 
having an energy of 70 eV. The electron interacts with analyte molecules in the gas phase, 
resulting in the loss or gain of an electron by the analyte creating a positively or negatively 
charged molecule, respectively. This type of ionization results in molecular fragmentation, 
which is related to the structural properties of the compound. Thus, each compound has a 
unique MS “fingerprint” that allows for the identification of the compound based on its 
fragmentation pattern. However, because the analyte is fragmented before it reaches the 
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detector, a loss in sensitivity results. In CI, a gas (typically methane or ammonia) is first ionized 
and then interacts with the analyte, resulting in the gain (positive ionization) or loss (negative 
ionization) of a proton. CI is considered a “soft” ionization process because it generally results 
in less fragmentation than EI, resulting in the potential for increased sensitivity. In contrast, CI 
often provides less structural information.  

 
7.3.2 LC-MS 

Unlike GC-MS, the separation of analytes in LC-MS occurs in the liquid phase. Thus, analytes 
reach the MS as dissolved solutes in the liquid phase rather than in the gaseous phase. 
Ionization of the target analyte in LC-MS also differs from GC-MS in that there are three 
common ionization techniques: electrospray ionization (ESI), atmospheric pressure chemical 
ionization (APCI), and atmospheric pressure photoionization (APPI). By far the most utilized 
form of LC-MS ionization, ESI produces a fine mist of charged droplets containing the analyte of 
interest. Droplets are reduced in size until the charged analyte escapes the droplet (ion 
desorption) or the solvent has evaporated to leave the charged analyte in the gas phase. This 
process can form positive and negative ions based on the polarity of applied voltages. The 
terms ESI+ and ESI- refer the polarity of ionization imparted to the fragment ion. In APCI, the 
eluent from the LC column is nebulized and heated to completely vaporize the solvent and 
target analytes. The evaporated solvent then becomes a reagent gas which is then ionized and 
whose charge is then transferred to the target analyte, creating charged ions for detection by 
MS. APPI is similar to APCI, except a photon-emitting krypton lamp is used to directly ionize the 
target analyte. APCI and APPI are generally only used for compounds found to be less amenable 
to ionization by ESI. 

 
7.3.3 GC-MS vs. LC-MS 

In general, GC-MS is more amenable to volatile, thermally stable, less polar compounds. 
Therefore, it has been the method of choice in the past for legacy pollutants such as 
polychlorinated biphenyls (PCBs), polycylic aromatic hydrocarbons (PAHs), and 
dichlorodiphenyltrichloroethane (DDT). However, newly discovered contaminants, such as 
PPCPs, are often polar and non-volatile.  This has, in part, led to the surge of popularity for the 
use of LC-MS to monitor emerging contaminants. For many of these compounds to be 
monitored by GC-MS, they need to be derivatized prior to analysis. This process can be 
painstaking, labor-intensive and ineffective. On the other hand, LC-MS has the ability to analyze 
a wide variety of compounds without the need for derivatization. 

However, the ESI process that is most frequently used during LC-MS analysis can be 
susceptible to matrix effects. During the ionization process, non-target analytes at a greater 
concentration and/or that have a higher affinity for becoming charged will exhaust the available 
charge and leave target analytes uncharged. If uncorrected, matrix effects may result in 
improper data interpretation because the effects can vary substantially between matrices and 
lead to the reporting of artificially low concentrations.  Researchers have tried to minimize 
matrix effects using various extraction, cleanup, and elution techniques (Kloepfer et al., 2005; 
Quintana et al., 2004; Reemtsma, 2003) or compensate for them using different calibration 
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techniques (Ferguson et al., 2000; Lindsey et al., 2001).  However, most calibration techniques 
become problematic when applied to the simultaneous analysis of a broad range of compounds 
that encompass many different classes and structures in matrices having varying degrees of 
suppression and enhancement (Vanderford & Snyder, 2006). 

 
7.3.4 Isotope Dilution LC-MS 

Perhaps the most promising method to date is the use of isotope dilution to correct for 
matrix effects. In this method, isotopically-labeled versions of each analyte are added to all 
samples prior to solid phase extraction (SPE). Results obtained for unlabeled target analytes are 
corrected for matrix effects based on the recovery of the labeled version. This method has 
shown promise when applied to the analysis of a varied group of PPCPs, pesticides and EDCs 
(Vanderford & Snyder, 2006). 

 
7.3.5 Quality Assurance/Quality Control Measures  

A comprehensive, performance-based QA/QC approach for CECs such as EDCs and 
pharmaceuticals is critical in generating high quality data for decision making purposes. 
Because CEC concentrations are often less than 100 ng/L, extensive care must be taken to 
prevent accidental contamination by sampling and laboratory personnel (see Section 7.2 of this 
report). In a report following their national reconnaissance of US streams, the US Geological 
Survey reported a significant number of episodes of blank contamination (Barnes et al., 2002), 
suggesting that even the most experienced laboratories encounter blank-related issues. Thus, 
blanks should be an integral portion of every sampling event and analytical batch to ensure that 
reported concentrations are present in the environment and, if contamination is suspected, to 
help determine a source of contamination.  Frequent travel, field, and laboratory reagent 
blanks, as well as instrument blanks, are recommended. 

The laboratory fortified blank, used to evaluate the performance of the total analytical 
system, including all preparation and analysis steps, is highly recommended for CEC analysis. 
Results of the laboratory fortified blank are compared to established criteria and, if found to be 
outside these criteria, indicate that the analytical system is not performing correctly and may 
not be producing acceptable results. Fortified blanks are typically prepared using a standard 
spike from a different source/batch from the one used to calibrate the instrument. To account 
for matrix effects, matrix spikes are also recommended to monitor the accuracy and 
quantitative recovery of target analytes. In this manner, deficiencies in the method can be 
revealed and corrected by techniques such as isotope dilution (Vanderford & Snyder, 2006). 
Duplicate matrix spikes are also recommended to provide an indication of precision. 

 
7.3.6 Method Detection L imits 

The limits of detection and quantification define the lowest levels at which an instrument 
can differentiate between a signal and noise and the lowest level at which a value may be 
reported, respectively. The determination of these values is especially important for the 
analysis of CECs, as many of these compounds occur at trace levels (sub-µg/L). Formal detection 
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and reporting limit studies are highly recommended (Glaser et al., 1981; USEPA, 1984; Martin et 
al., 2007; Winslow et al., 2006). In addition, every effort should be made to determine and 
verify the reporting limit in the matrices to be analyzed. This should include analyzing sample 
matrices fortified at or slightly above the determined reporting limit of the method to detect 
the presence of potential interferences that may lead to false negative or positive results. 
Furthermore, reporting limits should be re-evaluated frequently as sample matrices change or 
instrumental performance varies. 

 
7.4 Requirements for CEC Monitoring 

Public water systems are responsible for complying with all regulations, including 
monitoring, reporting, performing treatment techniques, record keeping, and public notice 
requirements. States, in turn, keep the data for public water systems in the state data files.  
States report violations of MCLs, as well as monitoring violations, to the USEPA. 

Compliance is based on a number of factors and depends on the individual contaminant. These 
factors are summarized in Appendix M using atrazine as an example.  

 
7.5 Monitoring for CECs using Commercially Available Methods  

Approved analytical methods must be used when analyzing water samples to meet federal 
monitoring requirements or to demonstrate compliance with drinking water regulations. 
Approved methods are listed in the Code of Federal Regulations after publication in a final rule 
or as part of an expedited approval. They are developed by the USEPA, other government 
agencies, universities, consensus methods organizations, water laboratories, and instrument 
manufacturers. Laboratories that analyze compliance samples must be certified by the USEPA 
or each individual state, although recently there has been movement to nationalize 
accreditation through the creation of the National Environmental Laboratory Accreditation 
Conference Institute (TNI). TNI is an organization that 1) develops and adopts for use into its 
programs consensus standards for accreditation of environmental testing laboratories and 
other organizations directly involved in the environmental measurement process; 2) 
implements a national program for the accreditation of environmental laboratories; 3) develops 
and maintains a national proficiency test program; 4) develops and maintains a national 
database of accredited laboratories; and 5) provides training and technical support to facilitate 
the implementation of a national accreditation program by accreditors (e.g., state agencies) 
and those entities pursuing accreditation (e.g., environmental laboratories). To ensure the 
quality of the data, methods approved by the USEPA demand rigorous QA/QC measures. These 
guidelines can be found in Appendix M.    

 
7.5.1 Availability of Commercial Laboratories for CEC Analyses  

During the course of this study, the Panel contacted five commercial laboratories in order to 
evaluate the commercial availability of CEC analyses. From the data received, it was obvious 
that there was relatively little consistency in compounds and method reporting limits among 
the laboratories surveyed. The Panel strongly recommends that once the initial priority list of 
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CECs is implemented by the State, commercial laboratories again be surveyed for capability of 
analysis of the initial CEC list. Additionally, it is recommended that the State conduct an initial 
performance evaluation of all laboratories, who respond by providing a series of blinded 
samples of recycled waters from the state, both unspiked and spiked with target CECs. 
Moreover, the initial performance testing should include randomized blanks and several 
replicate samples. From these data, the State will better be able to gauge the robustness of 
analytical methods available for indicator CECs. 

A currently ongoing study sponsored by the Water Research Foundation (WRF #4167) lead 
by the Southern Nevada Water Authority is evaluating several commercial and academic 
laboratories with respect to analysis of a specific group of pharmaceuticals and suspected 
endocrine disrupting compounds. Data collected thus far for spiked laboratory purified water 
has shown that variability is both laboratory and compound specific. Moreover, the rate of false 
positives (blank contamination) and false negatives (spiked but not detected) also was related 
to both laboratory performance and MDLs, as well as being compound dependent.   

The Panel also recognizes that variability and false positive/negative issues likely confound 
the MECs considered for the development of their CEC priority list (see Section 5). However, a 
detailed evaluation of the performance standards utilized by laboratories reporting measured 
CECs in California was beyond the scope of this project. It was obvious that some compounds in 
this dataset were more variable than others. In summary, the Panel believes that laboratory 
validation studies are of the utmost importance should the exposure screening approach 
proposed by this Panel be adopted by the State. 

 
7.6 Selection/Establishment of Appropriate Method Reporting Limits  

The Panel recognizes that monitoring at the lowest possible analytical detection limit is 
often not productive and often leads to erroneous data. Analytical variability and influence of 
false positive/negative results becomes a more significant issue at minute levels. This Panel 
recommends that for health-based values, or MTLs, a MRL of 10x lower than MTL be utilized 
(Table 7.1). However, in many cases, a 10x lower MDL may not be achievable using currently 
available methodologies. For instance, the MTL of NDMA is 1 ng/L, which would result in a 
suggested MRL of 0.1 ng/L, far below commonly employed analytical methods for NDMA. In 
these cases, the Panel suggests the use of the MRL that is closest to the MRL-goal and has 
proven reliability. For CEC performance indicators, the Panel recommends MRLs that are of 
sufficient sensitivity to monitor attenuation yet provide robust analytical results. Therefore, the 
Panel has collected recommended approximate MRLs for performance indicators, yet suggests 
that these values are not prescriptive and should be based on method performance 
measurements. The Panel stresses that accurate and precise QA/QC is vital in all monitoring 
programs. The Panel strongly recommends the inclusion of field blanks, laboratory blanks, 
replicate samples, and matrix spikes within each sampling event. The Panel also advises that 
the samples be sent to the analytical laboratories as anonymous randomized samples, that is, 
samples should not indicate the source and should provide information that allows them to be 
identified as blanks or matrix spikes. A monitoring program truly is only as good as the 
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reliability of the data collected. Therefore, it is vital that a robust QA/QC program be utilized at 
all stages of the monitoring program. 

 
 
Table 7.1. Recommended MRLs for health and performance based indicator CECs. 

 
Compound Health-based MRL 

(ng/L) 
Health-based 

MRLpractical (ng/L) 
Performance indicator MRL 

(ng/L) 

17beta-estradiol 0.09 1 1 

NDMA 0.1 2 2 

Caffeine 35 50 50 

Triclosan 50 50 50 

Sucralose N/A N/A 100 

Iopromide N/A N/A 50 

DEET N/A N/A 50 

Gemfibrozil N/A N/A 50 
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8.0 Monitoring Program for CECs in Water Reuse Leading to Urban Irrigation and 
Drinking Water Augmentation 

8.1 The Proposed Prioritization Scheme for CECs in Recycled Water  

The conceptual design of the Panel’s approach in prioritizing CECs for monitoring programs 
is illustrated in Figure 8.1. 

 

 

 

Figure 8.1. Conceptual CEC prioritization scheme.  
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This prioritization scheme provides guidance on how to select suitable, toxicologically 
relevant chemicals for monitoring purposes and considers that recycled water contains an 
unknown pool of CECs at large. CECs are classified into chemicals that have not been previously 
identified (“unknown unknowns”) and those that have been previously identified, some of 
which appear on the USEPA’s CCL3 list and others do not. For previously identified CECs the 
selection approach consists of four steps:  

 Compile environmental concentrations of either measured or predicted environmental 
concentrations of CECs in recycled water that is the source for water reuse projects;  

 Develop a MTL for each of these compounds (or groups thereof) based on toxicological 
relevance; 

 Compare the environmental concentration (e.g., MEC, PEC) to the MTL. CECs with a 
MEC/MTL ratio greater than “1” should be prioritized for monitoring. Compounds with a 
ratio of less than “1” should only be considered if they represent viable treatment 
process performance indicators; and 

 Screen the priority list to ensure that a commercially available, robust analytical method 
is available for that compound. 
  

For “known unknown” CECs concentrations potentially present in reused water can be 
estimated using information on per capita use or production volume and combined with 
information on per capita water use to develop a PEC as discussed in Section 6. The PECs for 
“known unknowns” can then be compared to MTLs to identify the CECs with the greatest 
urgency to develop analytical methods and confirm the PECs. 

For “unknown unknown” CECs, bioanalytical and chemical screening methods should be 
employed, when commercially available, to quantify effects or equivalent concentrations and 
identify chemicals for which there is the greatest urgency in developing MEC and MTL data for 
further assessment (Figure 8.1). As discussed in Section 6, bioanalytical methods are currently 
being used by several federal agencies to evaluate chemical safety, which will likely diminish 
input of hazardous chemicals into wastewater. Federal agencies have expressed similar 
concerns as the state regulatory entities regarding their inability to keep up with the regulation 
of CECs on a chemical-by-chemical basis using current risk assessment guidelines. Federal 
agencies have provided new risk assessment paradigms that incorporate high throughput 
models and bioanalytical assays to screen chemicals with specific animal testing directed only at 
chemicals that impair “critical modes of action”. Due to the urgency presented by the 
regulatory community and the current development and testing of bioanalytical methods, the 
Panel estimates that bioanalytical methods will eventually be formally utilized for chemical and 
mixture assessments within the next 3 to 10 years. Since these methods are still in 
development, it is recommended that future science advisory panels (i.e., review panel 
suggested for 2013) update the prioritization framework as bioanalytical methods become 
specifically engineered for the evaluation of  “unknown unknown” CECs in recycled water.  

A number of conservative assumptions are embedded within the framework utilized to 
identify potential CECs for monitoring in recycled water. The assumption category and an 
estimated level (“order of magnitude”) of conservatism compared to typical or commonly 
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expected exposures include the following:  

 Selection of the MEC as the combined secondary/tertiary treated effluents for a 
particular reuse practice will result in MECs that are on the order of 40 to 800 times 
higher than what is likely observed at the POM since no credit was given for consistent 
tertiary treatment or for advanced treatment processes required for direct injection 
groundwater recharge projects (Drewes et al., 2008). For example, the MEC90th for 
triclosan was reported as 485 ng/L; however, both SAT and RO can reduce this 
concentration to less than 50 ng/L reducing the MTL/MEC ratio from 1.39 to 0.14.   

 For groundwater recharge projects, no credit was included to address dilution provided 
by mixing with native groundwater, and/or incidental treatment provided by the soil-
aquifer system. Dilution credit for this assumption could provide an estimated safety 
factor of two-fold (e.g., based on the assumption of 50:50 dilution of recycled water 
with native groundwater). Treatment credit in the soil-aquifer system (e.g., adsorption, 
biodegradation) could provide a safety factor on the order of 10- to 90-fold (Drewes et 
al., 2008). 

 For the environmental exposure concentrations, the 90th percentiles of MECs were 
utilized which provides a safety factor of approximately 10-fold (e.g., based on 
comparison of the ratio of the 90th percentile to median concentrations contained in 
Appendix K). 

 For CECs with MECs below detection limits, the value of the reported MDL was used to 
represent the MEC providing an additional margin of safety; 

 Chemical toxicity assumptions included total uncertainty/safety factors that generally 
range from 100 to 10,000 and, thus, added additional degrees of conservatism (see 
Section 4). 

 Overall, the assumptions utilized to identify potential CECs for monitoring include 
between 4 to 6 orders of magnitude of conservatism for landscape irrigation projects 
and between 6 to 11 orders of magnitude of conservatism for indirect potable reuse 
projects. 

 
8.2 Application of the CEC Prioritization Scheme to Identify Chemicals that should 
be Monitored at the Present Time 

To assist the State in near-term program implementation, the Panel compiled available 
California MEC data and derived initial MTLs from drinking water benchmarks to apply the 
proposed scheme and to identify the chemicals that should be prioritized for present CEC 
monitoring. In applying the framework and in recognition of the time and resource constraints 
faced by the Panel for the purposes of this report, the Panel made of the following 
assumptions: 

 The environmental concentrations compiled from the Panel’s survey results represent 
secondary/tertiary treated effluent quality across the state; 
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 The MECs of CECs reported to the Panel were derived using validated and robust 
analytical methods; 

 The Panel used the benchmarks summarized in Appendix J to develop initial MTLs for 
the purpose of identifying an initial list of CECs to be included in a monitoring program. 
The Panel wishes to point out that the MTLs presented in Tables 8.1 and 8.2 are 
provided as initial values, based in part on the safety factors and assumptions identified 
above, to the State for the purpose of establishing interim recycled water monitoring 
plans. The Panel, as is discussed below in Section 8.3 urges the State to reconvene the 
Panel to periodically update the initial MTLs, as well as any subsequently developed 
MTLs, using ADIs developed by the State, or if such are not available, based upon further 
review of toxicity information using the process outlined in this report; and  

 For compounds with multiple drinking water benchmarks, initial MTLs were selected in 
the order of priority described below: 

 Given that the Panel’s charge was to develop recommendations for monitoring for 
the State of California, the drinking water benchmarks developed by CDPH were 
given highest priority. Thus, when a CEC has a CDPH derived benchmark, that 
benchmark formed the basis for the initial MTL for that CEC, regardless of whether 
other sources also had a benchmark that could have been used to derive an initial 
MTL for that CEC; 

 Given that the drinking water benchmarks presented in the preliminary CCL and 
CCL3 lists were derived by a regulatory agency (see Section 2), those were given the 
next highest priority. Thus, for compounds without a CDPH drinking water 
benchmark but with a benchmark presented in the USEPA CCL dossiers, the CCL 
dossier benchmark was employed, regardless of whether the remaining sources also 
had a drinking water benchmark for that CEC; and 

 For CECs without either a CDPH or USEPA CCL benchmark, the lowest drinking water 
benchmark from the remaining five potential sources was used as the basis for the 
initial MTL.   

The initial MTLs selected as described above were compared to MECs for recycled water in 
California to determine whether or not a CEC should be included in a monitoring program for 
potable and non-potable reuse systems. To derive the initial MTLs for landscape irrigation, the 
Panel multiplied potable use initial MTLs by 100 to account for the assumed reduced amount of 
water ingestion in a landscape irrigation setting (as described in Section 4). Given that the 
expected ingestion of water associated with landscape irrigation is 100-fold lower than that 
assumed for potable water use, and that is the only difference between the two sets of MTLs 
for the two scenarios, the landscape irrigation initial MTLs are 100 times greater than the initial 
MTLs for potable use. 

For the CCL3 CECs for which MECs were available in California (considering data available to 
the Panel), only two CECs exceeded a ratio of “1” while comparing the MEC with the MTL for 
potable reuse applications, which were E2 and NDMA (see Section 5, Table 5.1). For the non-
CCL3 CECs for which MECs and MTLs were available, only caffeine and triclosan exceeded a 
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MEC/MTL ratio of “1” (see Table 5.2). For the non-potable reuse practices, none of the CCL3 
CECs and non-CCL3 CECs exceeded a MEC/MTL ratio of 1. 

The Panel wishes to reiterate the conservative nature of the initial MTLs for the CECs 
indentified for inclusion on a monitoring list (Table 8.1). 

 17 -estradiol is a steroid estrogen, the majority of which has been reported to occur in 
wastewater as a result of natural excretion by humans rather than use of 
pharmaceuticals and that it is not predicted to be associated with adverse effects in 
drinking water (Caldwell et al. 2010). The primary reason that E2 had a MEC/MTL > 1.0 is 
that the initial MTL was based on the California Office of Environmental Health Hazard 
Assessment (OEHHA) cancer slope factor, as opposed to the ADI developed by the 
World Health Organization(WHO), which has been used by Australia (Australian-
guideline, 2008) to develop its drinking water guidelines (see text box in Section 4). Had 
the Australian guidelines been used to develop the initial MTL, E2 would not be 
identified as a CEC to include in a monitoring program in California.  

 Caffeine is a stimulant naturally present in virtually everyone’s diet, including coffee, 
tea, chocolate, as well as in some pharmaceutical products. The initial MTL for caffeine 
of 0.35 µg/l is the drinking water guideline established by Australia (Appendix J). Based 
upon the chemical structure of caffeine, Australia assumes that caffeine is a Threshold 
of Toxicological Concern Structural Class III Compound (“chemicals for which structural 
features or likely metabolic pathways either permit no strong presumption of safety, or 
actually suggest significant toxicity.” (Australian-guideline, 2008). Australia derives the 
caffeine drinking water guideline by dividing the NOAEL for chemicals in Structural Class 
III by a safety factor of 1,500. Both the assumption that caffeine is a Structural Class III 
compound and the use of an uncertainty factor of 1,500 result in an exceptionally 
conservative guideline and initial MTL. A sense of the degree of conservatism of the 
initial MTL of 0.35 µg/l is provided by a comparison of the initial MTL to the 
concentration of caffeine in brewed coffee, which can range between 250,000 and 
500,000 µg/l and in black tea is about 200,000 µg/L. Thus, the concentration of caffeine 
in coffee is approximately one million (1,000,000) times greater than the initial MTL and 
in black tea is about 500,000 times greater than the initial MTL. Given that the MEC for 
caffeine only exceeds the initial MTL by about 2.6-fold, had caffeine been assigned to a 
different Threshold of Toxicological Concern Structural Class, for example to Class I, to 
which are assigned “substances of simple chemical structure with known metabolic 
pathways and innocuous end products that suggest a low order of toxicity” (Australian-
guideline, 2008), the initial MTL would have been 20 times greater and caffeine would 
not be considered a initial CEC for monitoring.   

 Triclosan is an antibacterial and antifungal agent used in a variety of consumer products, 
including toothpastes, deodorants, and soaps. As with caffeine the initial MTL of 0.35 
µg/L for triclosan is based on the drinking water guideline established by Australia 
(Appendix J). Based upon the chemical structure of triclosan, Australia assumes that 
triclosan is a Threshold of Toxicological Concern Structural Class III Compound and then 
applies the safety factor of 1,500 to the NOEL described above to derive their guideline 
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(Australian-guideline, 2008). Unlike caffeine, two of the other sources of drinking water 
benchmarks reviewed by the Panel had drinking water benchmarks for triclosan. Snyder 
et al. (2008a) report a drinking water benchmark of 2,600 µg/L derived from by applying 
a safety factor of 1,000 to a NOEL of 75 mg/kg-day for systemic effects in hamsters. 
Cotruvo et al. (2010) report a drinking water benchmark of 500 µg/L. These benchmarks 
are between more than 1,000 to nearly 10,000 times greater than Australian benchmark 
and more in line with the widespread use of triclosan at levels of between 0.1 and 1.0% 
in common consumer products such as soaps and toothpastes. Had either of these 
alternative benchmarks been used, triclosan would not have been identified as a initial 
CEC for monitoring. 

 NDMA is a disinfection byproduct that also occurs in various foods and alcoholic 
beverages. California has established a notification level of 0.01 µg/L for NDMA based 
upon on an excess lifetime cancer risk level of 3.3x10-6, which is similar to the USEPA’s 
cancer risk benchmark of one in one million.    

 
Table 8.1. Exposure screening for CCL3 and non-CCL3 CECs in recycled water. 

 
 Secondary/Tertiary 

Treated MEC 90
th 

(ng/L) 

 Initial MTLs  MEC/MTLs 

 
  Potable Reuse Irrigation  Potable Reuse Irrigation 

CCL3 CECs        

17 -estradiol 8.4  9.0E-01 9.0E+00  9.33 0.93 

NDMA 68  1.0E+01 1.0E+02  6.8 0.68 

        

Non-CCL3 CECs        

Caffeine 900  350 3500  2.57 0.26 

Triclosan 485  350 3500  1.39 0.14 

 

These brief summaries presented above of the background exposures and toxicological 
bases for the indicator CECs point to the need to fully understand the conservative nature of 
the initial MTLs. It is for these reasons that the Panel urges people interpreting the results of 
the exposure screening that forms the core of the CEC prioritization framework shown in Figure 
8.1, to always keep in mind that the exposure screening was developed to prioritize CECs for a 
monitoring program; not to conduct an evaluation of potential risk. Inclusion of a CEC on the 
priority monitoring list does not mean the CEC poses a health risk. Further analyses outside of 
the framework proposed by the Panel are needed to evaluate the potential for a health threat.   

The overarching goal of a CEC monitoring program is to ensure that the expected 
performance of a recycled water treatment plant operates consistently over extended periods 
of time and, thus, reliably produces recycled water that matches, or is superior to 
predetermined standards and thus, can be used as source water for indirect potable reuse 
projects. Since water quality standards for CECs are not currently available, reliability then must 
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be defined as the likelihood of achieving a consistent effluent quality5. For the purposes of 
developing the CEC monitoring program (i.e., start-up and baseline defined as the monitoring 
program conducted after DPH approval of indirect potable reuse project operation), consistent 
effluent quality is defined as the final recycled source water containing ≤5 times the ratio of the 
MEC/MTL for the indicator CECs listed in Table 8.1. It should be noted again, that the CECs 
listed in Table 8.1 represent an initial list of monitoring compounds based on a number of 
qualifying assumptions previously discussed. As such, while the indicator CECs were selected 
using the screening approach developed and applied by the Panel, they can also be used in 
preliminary screening evaluations of effluent quality.   

 
8.3 Indicator Compounds and Surrogate Parameters for Treatment Performance 
Assessment 

As previously described, a conservative regulatory approach for the design and operation of 
potable reuse systems has evolved that employs multiple barriers of treatment processes with 
a demonstrated ability to remove contaminants (see Section 3). The treatment processes are 
subjected to intensive water quality monitoring programs designed to detect failures in system 
performance. Traditional water quality methods of measuring bulk organic matter in 
wastewater, such as measurements of chemical oxygen demand (COD), total organic carbon 
(TOC), total organic halides (TOX), or conductivity, continue to be used in monitoring programs, 
even though their ability to serve as surrogates for CECs has only been demonstrated very 
recently (Drewes et al., 2008; Dickenson et al. 2009; Drewes et al., 2010b). These studies 
demonstrate that changes in bulk parameters do correlate with changes of indicator chemicals 
in the subsurface or during RO treatment leading to direct injection (Drewes et al. 2010a). Thus, 
to ensure proper performance of unit operations regarding the removal of CECs, a combination 
of appropriate surrogate parameters and performance indicator CECs should be selected that 
are tailored to monitor the removal efficiency of individual unit processes comprising an overall 
treatment train. Performance indicator CECs and surrogate parameters are defined as follows: 

 Indicator -- An indicator compound is an individual CEC occurring at a quantifiable level 
that represents certain physicochemical and biodegradable characteristics of a family of 
trace organic constituents that are relevant to fate and transport during treatment. It 
provides a conservative assessment of removal. 

 Surrogate -- A surrogate parameter is a quantifiable change of a bulk parameter that can 
measure the performance of individual unit processes (often in real-time) or operations 
in removing trace organic compounds. 

An indicator and surrogate approach utilizes only a limited set of analytes for the evaluation 
of potable reuse projects. The selection of a practical set of indicator compounds is driven by 

                                                      

5 The definition of performance reliability only encompass the variability associated with effluent quality related to 

by in-plant treatment processes and assumes that the plant is properly designed, operated and maintained.   
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treatment performance and less so by toxicological relevance. Thus, selecting multiple 
indicators representing a broad range of properties will allow accounting for compounds 
currently not identified (“unknowns”) and new compounds synthesized and entering the 
environment in the future (i.e., new pharmaceuticals) provided they fall within the range of 
properties covered. The underlying concept is that absence or removal of an indicator 
compound during a treatment process would also ensure absence or removal of unidentified 
compounds with similar properties. Table 8.2 lists health-based indicator CECs along with 
performance-based indicator CECs for the two groundwater recharge practices of interest to 
the Panel. Please note that certain health-based indicator CECs are also fulfilling the function of 
performance-based indicators (e.g., caffeine, NDMA). For these reuse practices as well as urban 
irrigation, performance surrogate parameters are also listed. It is noteworthy, that 
performance-based measures (using the select indicator CECs and surrogates) are differential 
measures (i.e., difference between the influent and effluent of a process). For both the health- 
and performance-based indicator CECs; MRLs are provided 

 
Table 8.2. Health-based and performance based indicator CECs and performance surrogates for potable and 
non-potable reuse practices. 
 

Reuse 
Practice 

Health-
based 
Indicator 

MRL 

(ng/L) 

Performance-
based 
Indicator 

Expected 
Removal8 

MRL 

(ng/L) 

Surrogate Method Expected 
Removal8 

Groundwater 
Recharge  

17 -
estradiol1 

1 gemfibrozil5 >90% 10 ammonia SM >90% 

SAT Triclosan2 50 DEET6 >90% 10 nitrate SM >30% 

 Caffeine3 50 Caffeine3 >90% 50 DOC SM >30% 

 NDMA4 2 iopromide5 >90% 50 UVA SM >30% 

   Sucralose7 <25% 100    

         

Direct 
Injection 

17 -
estradiol1 

1 DEET >90% 10 conductivity SM >90% 

 Triclosan2 50 Sucralose >90% 100 DOC SM >90% 

 Caffeine3 50 NDMA 25-50% 2    

 NDMA4 2 Caffeine >90% 50    

         

         

Landscape 
Irrigation 

None  None   Turbidity SM  

      Cl2 Residual SM  

      Total Coliform SM  

1
Steroid hormones; 

2
Antimicrobial; 

3
Stimulant; 

4
Disinfection byproduct; 

5
Pharmaceutical residue; 

6
Personal 

care product; 
7
Food additive; 

8
travel time in subsurface two weeks and no dilution, see details in Drewes et 

al. 2008; SM – Standard Methods 

 
The determination of these differentials (for performance indicator CECs and surrogates) for 

individual unit processes comprising an overall treatment train is distinguished into two phases: 
piloting/start-up and full-scale operation monitoring (Table 7.3). In order to apply the 
surrogate/indicator framework to a given or proposed treatment train, first operational 
boundary conditions of treatment processes need to be identified, ensuring the performance of 
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each unit process according to their technical specifications. During a piloting/start-up phase 
for each unit process, the surrogate or operational parameters that demonstrate a measurable 

removal (differential) under normal operating conditions ( X = [Xin - Xout]/Xin) need to be 
identified. In parallel, an occurrence study is to be performed confirming the presence of the 
proposed performance indicator CECs in the feedwater of each unit process (in the case of a 
surface spreading facility, recycled water prior to and after SAT; in case of direct injection, 
recycled water prior to and after RO/AOP). During piloting or start-up of a new treatment 
process, monitoring for a short time period should be conducted with the proposed 

performance-based indicator CECs to determine the removal differential Y under normal 
operating conditions. For the full-scale operation, the operational boundary conditions and 

removal differential X and Y for selected surrogate and operational parameters and indicator 
compounds should be confirmed. To ensure the proper performance of each full-scale unit 
operation, select surrogate and operational parameters should be measured on a regular basis. 
While it is implied that proper performance of the full-scale treatment train will ensure 
appropriate removal of CECs, the proposed performance based indicator compounds for each 
water reuse practice should be monitored at frequencies in the order of semiannually or 
annually.  

Table 8.3. Application of surrogate/indicator framework to an overall treatment train (adopted from Drewes et 
al. 2010b). 

 

 Surrogate Parameters Performance Indicator CECs 

Piloting and/or Start-up 

Step 1 Define operational boundary conditions for 
surface spreading (SAT) or direct injection 
(RO/AOP) for proper operation according 
to technical specifications 

 

Step 2 For each unit process, identify those 
surrogate or operational parameters that 
demonstrate a measurable removal under 
normal operating conditions and quantify 
their removal differential 

X = [Xin - Xout]/Xin) 

Conduct occurrence study to confirm presence of 
performance based indicator CECs in the 
feedwater of each unit process 

Step 3 Select viable surrogate and operational 
parameters for each unit process 

Monitor for performance indicator CECs during 
pilot scale or start-up to determine the removal 
differentials under normal operating conditions 

Y = [Yin - Yout]/Yin) 

Full-Scale Operation and Performance Monitoring 

Step 4 Confirm operational boundary conditions of 
full-scale operation and removal differential 

X for selected surrogate and operational 
parameters 

 

Step 5 Monitor differential X of select surrogate 
and operational parameters for each unit 
process on a regular basis (daily, weekly) 

Monitor differential Y of selected indicator 
compounds for each unit process 
semiannually/annually 
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In addition to identifying the surrogate, real-time or on-line water quality monitoring 
represents an issue of concern and uncertainty. On-line monitoring involves constant in-situ 
measurement of a body of water as opposed to analyzing samples in the laboratory. As 
California and worldwide reuse treatment plant performance and reliability requirements 
become more stringent the topic will require an increasing level of investigation and 
development. Faced with compliance with more stringent environmental regulations, plant 
operators as well as instrument manufacturers will need new standards and improved 
techniques. Currently available methods tend to focus on on-line monitoring on a small subset 
of general organic parameters (e.g., BOD, COD, TOC) and some physical parameters (e.g., 
volume, flow, pH, turbidity, salinity). Currently, biosensors, optical sensors and sensor arrays as 
well as virtual sensors for the monitoring of wastewater organic load and other chemical 
constituents are under investigation/development. As reliable methods and equipment become 
available, they should be incorporated into the water reuse regulatory and industry standards 
of practice.  

 
8.4 Monitoring Program and Suggested Response(s) for Indirect Potable Reuse 
Projects  

Due to time and resource constraints, the guidance provided regarding a start-up and 
baseline monitoring program does not address all situations that the regulator and regulated 
entity will need to address. Under these circumstances, the Panel recommends that the 
affected stakeholders consult experts to recommend a plant or regional-specific solution.  

To carry out the monitoring program for the indicator CECs identified above, the Panel 
recommends a multi-tiered approach for implementing and interpreting results from CEC 
monitoring programs for recycled water. While the Panel provides recommended thresholds 
for each of these tiers, conservative values were selected because of the limited toxicological 
information available and the interim nature of the initial MTLs. When drinking water 
benchmarks or ADIs derived by the State are available, those should be used to update and 
establish MTLs. The Panel also understands that differences in recycled water quality and 
facility operations will occur by region and that investigation of chronic exceedances will need 
to be tailored on a region-by-region or case-by-case basis. 

The following discussion provides the Panel’s recommended guidance on the monitoring, 
response and the subsequent review/updating of those plans for groundwater recharge 
projects used for drinking water augmentation. 

 
8.4.1 Guidance on Start-up and Baseline CEC Monitoring Programs for Groundwater 
Recharge Projects 

The sampling location, type of IPR project (including treatment processes), CEC 
constituent(s), and frequency of sampling all depend on the sampling objective. Two types of 
monitoring are suggested, start-up and baseline monitoring. Also, the suggested constituents 
contained in Table 8.2 have been identified as either an indicator of health relevance, overall 
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plant efficacy or a surrogate to represent treatment process performance. Based on the above, 
the Panel provides the following guidance: 

 Overall Treatment Plant Efficacy - In general, sampling for CECs indicators should occur 
at the POM (as discussed in Section 1). To meet the draft CDPH groundwater recharge 
reuse regulations additional sampling is typically necessary from downgradient wells, 
from monitoring wells representing the underlying groundwater and/or from shallow 
lysimeter wells.  The location and monitoring criteria for selection and use of these 
sampling locations are site-specific and need to be defined on a case-by-case basis. The 
guidance provided within this report should be used to supplement the monitoring 
conducted as part of compliance with the draft CDPH regulations; 

 Plant Start-up Monitoring Frequency - Initial start-up monitoring should include, 
at a minimum, quarterly analyses of the compounds identified as Indicator CECs 
(see Table 8.2) for the first year of project operation. The surrogates identified in 
Table 8.2 should be monitored using online devices, where feasible. 

 Baseline Monitoring Frequency - Baseline monitoring should occur twice per 
year for all indicator CECs at the POM for a minimum of three years.  Consistent 
water recycle plant operation should produce final effluent IPR project source 
water containing Table 8.2 CEC concentrations that are consistently less than 5 
times the ratio of MEC/MTL. The surrogates identified in Table 8.2 should be 
monitored using online devices, where feasible. 

 Treatment Unit Process Performance - The following guidance is provided for 
monitoring the surrogates and indicators during start-up and baseline operations.  

 Plant Start-up Monitoring Frequency - Initial start-up monitoring should include, 
at a minimum, quarterly analyses of the compounds identified as indicator CECs 
(see Table 8.2) for the first year of project operation. The surrogates identified in 
Table 8.2 should be monitored using online devices, where feasible. To provide 
certainty that the individual treatment processes are performing according to 
their technical specifications, monitoring (depending on the type of IPR project) 
should occur at the following representative locations. The following example is 
for a direct injection based IPR (i.e., using RO/AOP). Duplication of effort at the 
POM is not the intent, but just shown for completeness.    

o Between secondary and membrane treatment processes; 

o Between membrane and advanced oxidation treatment; and 

o Final effluent after advanced oxidation and prior to groundwater 
injection (POM). 

The following sampling locations are suggested for an IPR using surface 
spreading. As noted above the selection of monitoring and lysimeter wells are 
site-specific and need to be selected consistent with DPH regulations. 

o Final effluent after tertiary treatment and prior to release to the 
groundwater spreading basin (e.g., POM). 
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o At monitoring wells representing the underlying groundwater and/or 
from shallow lysimeter wells.  

o At down-gradient well(s) representing the potable source water prior 
to the potable water treatment plant. 

 Baseline Monitoring Frequency - Baseline monitoring should occur twice per 
year for all indicator CECs at the POM for a minimum of three years.  Consistent 
water recycle plant operation should produce final effluent IPR project source 
water containing Table 8.2 CEC concentrations that are consistently less than 5 
times the ratio of MEC/MTL. The surrogates identified in Table 8.2 should be 
monitored at the various treatment unit locations noted above using online 
devices, where feasible. 

 Increasing Monitoring: If indicator CECs exceed the suggested thresholds during start-up 
or baseline monitoring, the Panel recommends that the recharge agency work with DPH 
and the RWQCBs to identify the need for and extent of increased monitoring to confirm 
the presence of problematic CEC(s), source identification studies, and/or toxicological 
studies. If appropriate, increased monitoring might involve engineering removal studies 
and/or modification of plant operation if found to be warranted. 

 Commercial Laboratory Conditions: Methods used to quantify indicator CECs need to 
meet stringent QA/QC measures, including blanks, replication, and matrix spikes. The 
Panel recommends the use of isotope-dilution and tandem mass spectrometry 
whenever possible. A detailed description of analytical considerations is provided in 
Section 7 and Appendix M. 

 
8.4.2 Response to Monitoring Results  

Should there be positive baseline monitoring results, the recharge agency, RWQCBs and 
CDPH needs to consider whether the result is of concern. Consideration should entail topics 
such as: review of the basis of the (initial) MTL; what is known and what is not known about the 
particular chemical, the chemical’s potential health effects at the given concentration, the 
source of the chemical, as well as possible means of better control to limit its presence, 
treatment strategies if necessary, and other appropriate actions.   

The Panel provides the following guidance relative to defining positive monitoring results 
and the potential associated follow-up action(s). While the Panel provides guidance on 
thresholds for each of these tiers, conservative values were selected because of the limited 
toxicological information available. The guidance is provided based on the assumption that the 
Panel’s conceptual framework, utilized within this report, include a minimum safety factor of 
approximately 10,000-fold. The Panel recommends that the recharge agency confer with the 
DPH and the appropriate RWQCB to develop a response plan with specific actions to be 
implemented by the recharge agency as part of interpreting appropriate responses to the 
monitoring results. 
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 If no more than 25 percent of the samples during phase-2 monitoring exceed a 
MEC/MTL ratio of 0.1, the Panel recommends that the DPH consider deleting the 
compound from further monitoring, if requested by the permitted agency. In cases 
where a reduction of monitoring is requested, the MTL(s) should be updated, if feasible, 
as part of reviewing the request. 

 If 1<MEC/MLT< 10: data check, continue to monitor, until 1 year and the MEC/MLT < 1 
and preferably is consistently less than 5 times the ratio of MEC/MTL. 

 If 10<MEC/MLT< 100: data check, immediate re-sampling and analysis to confirm MEC, 
continue to monitor, until 1 year and the MEC/MLT< 1 and preferably is consistently less 
than 5 times the ratio of MEC/MTL. 

 If 100<MEC/MLT< 1000:  all of the above plus enhance source identification program.  
Also monitoring at a point in the distribution system closer to the POE to confirm 
attenuation of the CEC is occurring and to confirm the magnitude of assumed safety 
factors associated with removal efficiency. The POE should be selected consistent with 
the DPH regulations6. 

 MEC/MTL>1000: all of the above plus immediately confer with the CDPH and the 
RWQCBs to determine the required response action. Confirm plant corrective actions 
through additional monitoring that indicates the CEC levels are below at least an 
MEC/MTL of 100.) 

 
Please note that the baseline monitoring recommended by the Panel and additional follow-

up monitoring to investigate and address positive findings should not be considered for 
compliance and/or regulatory purposes, but for investigation and potential use for additional 
follow-up actions only as part of conferring with the CDPH and the RWQCBs. 

 
8.4.3 Review/Update of Monitoring and Response Plans  

In addition to the above suggested monitoring and results-based responses, the Panel 
suggests the following actions relative to updating and confirming the plant data as well as the 
list of indicator CECs for monitoring purposes. 

 Once every five years, one additional round of CEC monitoring should be conducted to 
confirm monitoring results. The monitoring list should reflect suggestions of an 
independent panel, preferably a single non-project based State panel, following a 
selection process outlined in this report. The monitoring results should be submitted, 
along with all of the previous monitoring data, as part of the five year CDPH report (see 
draft CDPH regulations, section 60320.090). 

 The State independent panel should review and update the list of indicator CECs at least 
triennially. The review and update should include the following: 

                                                      
6
 Refer to draft CDPH regulations sections 60320.070 and 60320.090, for example.   
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 Collect and review readily available toxicity data and update MTLs; 

 Collect and review California advanced treatment plant effluent data including 
IPR monitoring data collected as part of CDPH permitted projects and update 
MECs; 

 Update list of indicator CECs to include newly identified CECs where the 
MEC/MTL>1 and remove CECs where updated data indicate that the current 
MEC/MTL<1;  

 Review CECs that have come off the monitoring list to see whether use patterns 
have changed and whether this change warrants their re-listing for monitoring; 

 Review and update guidance on sampling frequency and location; 

 Review and update conclusions regarding laboratory analytical methods; 

 Review and update biological and chemical screening methods, as discussed in 
Section 6, and provide guidance on potential new monitoring methods/tools that 
would significantly enhance chemical conventional chemical monitoring 
methods; 

 Develop guidance to the State for updating the monitoring requirements in 
groundwater recharge project permits; and 

 Review and update Panel guidance on selecting viable surrogate parameters and 
performance indicator CECs. 

 
8.5 Monitoring for Additional CECs with Insufficient MECs  

As pointed out repeatedly, the Panel selected the indicator CECs for a monitoring program 
based on MEC data available to the Panel. As some of the CCL3 CECs did not have any California 
MEC data, the Panel reviewed the entire data base of CCL3 CECs and short-listed those CECs 
with MTLs of less than 500 ng/L that could have the potential to trigger a MEC/MTL ratio of 
larger than “1” (see Table 5.3, Section 5). To provide the State with guidance on the relevance 
of these CECs to the water recycling practices of interest, the Panel suggests monitoring select 
CCL3 CECs for which currently no California MECs are available in secondary/tertiary treated 
effluent representing the feed water quality to either surface spreading or advanced water 
treatment (i.e., RO/AOP) ahead of direct injection. Monitoring should occur quarterly for one 
year. Table 8.4 lists these suggested CCL3 CECs for which commercial methods are available and 
their corresponding method reporting limits. 

In order to fill data gaps regarding CECs with limited or no information on MECs in 
California, the Panel also suggests that the State initially conduct a more thorough review of 
CECs likely to occur in recycled water using MEC and PEC data from the peer-reviewed 
literature and occurrence studies outside California. Those CECs that exhibit high MECs and 
PECs could be placed on a secondary monitoring list that is measured less frequently to confirm 
either presence or absence of these CECs in recycled water in California providing commercial 



CEC Panel FINAL REPORT – June 2010  Section 8 

 73 

analytical methods are available. Results of this effort will provide the basis for revising the 
proposed initial monitoring list during the next triennial review. 

 
Table 8.4. Suggested CECs with limited MEC for additional monitoring.  

 

CECs for Additional Monitoring MTL MRL (ng/L) 

1,2,3-Trichloropropane 5.0E+00 5 

Hydrazine 1.0E+01 1 

Quinoline 1.0E+01 1 
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9.0 Recommendations 

Because the science of CEC investigation is still in its early stages and the Panel was limited 
in both time and resources, the State can undertake several activities to improve the quality of 
future monitoring and toxicological information that feeds into the process that the Panel has 
identified for this inaugural CEC monitoring effort. The State should utilize a Science Advisory 
Panel to conduct and oversee these activities. This Expert Panel provides a number of 
recommendations that are geared toward ensuring that monitoring data is of appropriately 
high quality and identifying those CECs in recycled water that are of greatest concern and 
relevance to ecosystems and human health, including: 

1) In order to populate a recycled water data base of CECs with MEC and PEC data, conduct 
a comprehensive review of CECs likely to occur in recycled water based on peer-
reviewed literature and occurrence studies outside California; 

2) Develop robust and reproducible analytical methods to measure CECs in recycled water; 

3) Perform laboratory performance and analytical method validation studies for CECs 
adopted by the State as monitoring priorities; 

4) Develop a detailed procedure to estimate PECs for CECs for which MECs are currently 
not available based on production, use and environmental fate; 

5) The SWRCB should convene and charge a Science Advisory Panel to scope out an 
investigative, short-term monitoring study (e.g. quarterly sampling over a one-year 
period) for CECs that exhibit relatively low MTLs (e.g. < 500 ng/L), but for which no or 
little MEC or PEC information is available for secondary/tertiary effluents used for the 
water reuse practices of interest; and  

6) Encourage development of bioanalytical screening techniques that include CECs 
currently not identified but potentially present in recycled water (“unknown unknown” 
chemicals). Develop appropriate trigger levels for these bioanalytical screening 
techniques that correspond to a response posing a concern from a human health 
standpoint. 

 
The Panel emphasizes that the compounds selected for monitoring in indirect potable reuse 

applications represent a preliminary list based on the limited data that are presently available 
in California and on a number of qualifying assumptions discussed in the report. While they 
represent a conservative screening of “CECs at large”, the information available for such 
screening is growing rapidly as is the sheer volume of monitoring and supporting toxicological 
information.  Thus, in addition to the research recommendations from above, the Panel urges 
the State to: 

1) Develop a process to rapidly compile, summarize and evaluate monitoring data as they 
become available. Identify trends in occurrence pattern as a function of time and 
sampling locations;  

2) Reapply the prioritization process at least on a triennial basis; and 
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3) Establish a State independent review panel that can provide a periodic review to the 
proposed selection approach, reuse practices, and MECs of ongoing CEC monitoring 
efforts.  
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Dr. Anderson has over 20 years of experience in human health and ecological risk assessment. Since 
2000, Dr. Anderson has led several research efforts investigating the potential presence and effects of 
active pharmaceutical ingredients (APIs) and personal care products in surface water as well as other 
environmental media. His research in the area of constituents of emerging concern (CECs) began with 
the development of a screening level model (the Pharmaceutical Assessment and Transport Evaluation 
(or PhATE™) model) that predicts the concentration in surface water of human-use pharmaceuticals and 
other compounds released from sewage treatment plants across the United States (including the 
Sacramento and Lower Colorado Rivers). The model has since been corroborated and was published in 
Environmental Science and Technology in 2004. Additionally, Dr. Anderson helped develop and 
continues to oversee the use of a database that summarizes the English language peer-reviewed 
literature on aquatic toxicity, environmental fate in surface water and treatment plant removal of 
pharmaceuticals. The database is designed to make all historical information easily accessible to users as 
well as providing them with up-to-date information. Dr. Anderson and his colleagues have used these 
tools to conduct several evaluations, including an assessment of the potential human health effects of 
several therapeutic classes of pharmaceuticals in US surface waters; the development of a predicted no 
effect concentration for protection of aquatic receptors from ethinyl estradiol (EE2); a comparison of 
predicted to measured concentrations of EE2 in surface water to establish the range of likely EE2 
concentrations (submitted for publication); an evaluation of the potential for estrogens (both prescribed 
and naturally occurring) in drinking water to pose a potential risk to humans in the United States 
(submitted for publication); and characterization of the potential ecological risk associated with EE2 in 
surface water (manuscript in preparation). More recently, Dr. Anderson has expanded his research in 
the area of trace compounds in surface waters to include two comprehensive reviews of existing 
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information and ongoing research efforts.  The first was a review of the state-of-the-science of 
endocrine disrupting compounds (EDCs) and the implications of the presence of such compounds for 
wastewater treatment, published by the Water Environment Research Foundation in 2005. It described 
the sources of EDCs in wastewater, their fate in wastewater treatment plants, and impacts in the 
environment as a result of discharges. The second project, published in 2008, updated and expanded 
the 2005 work on EDCs to include the full range of organic compounds that may occur at trace levels in 
wastewater treatment plant effluents. The research included: a review of the different sources and 
categories of trace organic compounds; how they are measured; their removal in treatment plants; an 
introduction to the potential ecological and human health effects associated with trace organics in 
treated wastewater, recycled water, and receiving streams; and an overview of current research needs 
including a summary of web-links describing major current research initiatives. Dr. Anderson is also an 
adjunct professor in the Center for Energy and Environmental Studies within Boston University’s 
Geography Department. 
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The overall focus of Dr. Schlenk’s laboratory has been to evaluate mechanisms of action of chemicals in 
aquatic and marine organisms. For the past 15 years, Dr. Schlenk has been interested in the estrogenic 
effects of legacy and emerging chemicals of concern.  Initial work began with exploring the 
stereoselective biotransformation and activation of the legacy contaminant, methoxychlor. His lab 
helped develop a method to measure the egg yolk protein, vitellogenin in channel catfish and Japanese 
medaka. This metric was used to evaluate estrogenic activity in wastewater treatment plants in the 
south and east coasts and waterways of the United States. From there, his laboratory evaluated the 
effects of ß-adrenergic antagonists and other pharmaceutical agents on aquatic fish and invertebrates. 
Dr. Schlenk’s research in California has focused on the impacts of feminization on marine fish 
reproduction and populations as well as the identification of causal agents in sediments and water 
receiving oceanic discharge from municipal wastewater treatment facilities, particularly off the coast of 
Orange County. In addition, his laboratory conducted studies evaluating the long-term effects of 
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recycled water on fish health. Current studies are underway to identify unknown estrogenic compounds 
in surface waters of the Central Valley and Santa Ana River. Specific agents that have been examined 
include current use pesticides (such as pyrethroids and herbicides), surfactants and UV-sunscreen 
agents. It is his goal to understand the modes of action of these compounds alone and in mixtures to 
determine the interactive roles each may have in endocrine disruption. In 2008, Dr. Schlenk served on 
the USEPA Science Advisory Board to evaluate potential changes to the Aquatic Life Criteria for 
Compounds of Emerging Concern. From 2003-2006, he was a member of the Board of Directors for the 
North American Society of Environmental Toxicology and Chemistry. He is the co-Editor-in Chief of 
Aquatic Toxicology and serves on the editorial boards of Toxicological Sciences, The Asian Journal of 
Ecotoxicology and Marine Environmental Research. He has been a permanent member of the USEPA 
FIFRA Science Advisory Panel since 2007, and has participated in proposal review panels for the USEPA, 
NOAA, and the National Institute of Environmental Health Sciences.  
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Vice President 
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B.S., Civil Engineering, University of Connecticut  

 
Dr. Olivieri has over 30 years of experience in the technical and regulatory aspects of water recycling, 
groundwater contamination by hazardous materials, water quality and public health risk assessments, 
water quality planning, wastewater facility planning, urban runoff management, and on-site waste 
treatment systems. He is a Registered Civil Engineer and a Registered Environmental Assessor with the 
State of California. Dr. Olivieri has extensive experience in the area of microbial risk assessment and the 
application of such models to make engineering and public policy decisions. Recently he served as 
Principal Investigator on the development of a user friendly microbial risk assessment tool (MRAIT) for 
the Water Environment Research Foundation. Dr. Olivieri served as the co-project director at the Public 
Health Institute/Western Consortium for Public Health, where he directed the City of San Diego’s Health 
Effects Studies at Mission Valley and San Pasqual, investigating the health risks of potable reuse of 
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recycled San Diego municipal wastewater. The overall research plan was developed to address the 
fundamental issues raised by the 1982 National Research Council, and consistent with their 
recommendations involved a comprehensive investigation and comparison of both a recycled and a 
current potable water supply. The research project involved developing research plans and managing 
research across a wide base of California’s prestigious universities including Berkeley, Davis, Los Angeles, 
San Francisco, and Scripps (San Diego), San Diego State University and several laboratories of the 
California Department of Public Health Services. The project involved research in the following major 
areas: a) Infectious Disease Agents – pathogenic viruses, parasites, and bacteria (including indicator 
organisms), b) Chemical Screening – volatile and semi-volatile organics, metals, PCBs, dioxins, TOC, and 
TOX, c) Genetic Toxicity Bioassay – Ames Assay, Micronucleus tests, 6-Thioguanine Resistance Assay, 
and Cellular Transformation Assay, d) Fish Biomonitoring, e) Plant Reliability – performance and 
mechanical reliability analysis and chemical and microbial agent unit and plant spiking studies, f) 
Chemical Risk Assessment – carcinogenic and non-carcinogenic, g) Epidemiology – baseline information 
(reproductive outcomes, vital statistics, and neural tube defects), and h) a Long-Term Health Effects 
Monitoring Plan. The San Diego Health Effects investigations have been recognized by the Science 
Advisory Board and a special publication by the Water Environment Federation and the American Water 
Works Association covering the use of recycled water to augment potable water resources. The San 
Diego Health Effects investigations have also been recognized and used by the Australian government 
and the University of New South Wales in the development of water reuse guidelines. Dr. Olivieri has 
and continues to serve on a number of national technical review panels. Currently he serves on two 
National Water Research Institute technical review panels, one for Orange County (CA) evaluating the 
alternative disinfection options for the wastewater treatment plant along with potential public health 
implications related to recreation exposure. The second is for Monterey County (CA), which is evaluating 
groundwater recharge using recycled water. At the request of the USHouse of Representatives – 
Subcommittee on Water Resources and Environment, he provided testimony on April 13, 2005 on 
microbial agents and risk assessment relative to the national wastewater blending issue.  

 

 

BIOCHEMIST 
 
Dr. Nancy Denslow 
Professor 
Dept. of Physiological Sciences and Center for Environmental and Human Toxicology 
University of Florida, Gainesville, FL  32611 
phone: 352-294-4642  
email: ndenslow@ufl.edu  
 
Education: 
Postdoctoral Fellow, University of Florida 
Ph.D., Biochemistry and Molecular Biology, University of Florida 
M.S., Biochemistry and Molecular Biology, Yale University 
B.S., Chemistry, Mary Washington College 
 
Dr. Denslow’s research involves environmental toxicology with a special focus on endocrine disruptors 
and pharmaceuticals in the environment.  Her interests include defining molecular mechanisms of action 
of endocrine disrupting chemicals that adversely affect reproduction in fish that are exposed to the 
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contaminants in surface waters. Her research covers both sex hormone receptor mediated and 
independent mechanisms. Favorite model systems include largemouth bass, fathead minnow, 
sheepshead minnow and zebrafish. Common research tools include traditional toxicology assays, 
biochemical pathways, histopathology, microarrays, real time PCR, proteomics, tissue culture based 
assays, transfections and in vivo determination of reproductive endpoints. In addition, Dr. Denslow has 
initiated research to understand the effect of nanomaterials on fish health. These experiments are 
integrated to look at gill function, histopathology, nanomaterial uptake and nanomaterial 
characterization. In addition, microarrays and proteomics tools are used to characterize the effects of 
the exposures.  She has published more than 120 peer-reviewed publications and has led research 
projects supported by NIH/NIEHS, NSF, USEPA, and the USArmy Corps of Engineers. Dr. Denslow also 
serves as Associate Editor for Comparative Biochemistry and Physiology Part D Toxicogenomics and 
Ecotoxicology and Environmental Safety, and received the Pfizer Award for Research Excellence in 2007 
and a UFRF professor designation for 2009-2012.  Dr. Denslow previously served for 15 years as the 
Director of the Protein Chemistry and Molecular Biomarkers Core Facility at the University of Florida. 
She has served on the Executive Board of the Association for Biomolecular Research Facilities (ABRF) and 
is a member of the Society of Environmental Toxicology and Chemistry (SETAC) and the Society of 
Toxicology (SOT) serving as senior councilor in the Molecular Biology Specialty Section.  She is also a 
member of the American Association for Biochemistry and Molecular Biology (ASBMB). 
 
 
 
 

CIVIL ENGINEER FAMILIAR WITH THE DESIGN AND CONSTRUCTION OF RECYCLED WATER TREATMENT FACILITIES 
 
Dr. Jörg E. Drewes (Panel Chair) 

Professor and Director 

Advanced Water Technology Center (AQWATEC) 

Environmental Science and Engineering Division 

Colorado School of Mines 

Golden, CO 80401-1887 

Phone: 303-273-3401  

E-mail: jdrewes@mines.edu  

 
Education: 

Postdoctoral Fellow, Arizona State University 

Ph.D., Environmental Engineering, Technical University of Berlin, Germany  

Dipl. Ing., Environmental Engineering, Technical University of Berlin, Germany  

 

Dr. Drewes has been actively involved in research in the area of water treatment and non-potable and 
potable water reuse for more than 18 years. For the last 14 years, Dr. Drewes has been conducting 
research on indirect potable reuse projects in the State of California, including surface spreading as well 
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as direct injection projects. The main focus of these studies has been the fate and transport of trace 
organic chemicals in these systems. He has led research as the principal investigator (PI) or Co-PI to 
better understand the rejection of trace organic chemicals during high-pressure membrane treatment 
(nanofiltration, reverse osmosis) as well as the fate and transport of micropollutants in soil-aquifer 
treatment systems. A common theme in all these projects was to identify meaningful trace organic 
compounds that can serve as indicator compounds for system performance assessments. He has also 
conducted tailored studies to further develop this concept for multiple treatment processes commonly 
employed in indirect potable reuse followed by more focused efforts for surface spreading and direct 
injection projects. This indicator concept has been adopted in the Australian Water Recycling Guidelines 
for Drinking Water Augmentation in 2008. In addition, he has been involved in several studies 
addressing the occurrence of emerging contaminants in recycled water and to provide guidance to the 
water industry regarding occurrence, fate and transport, health effects, analytical methods and 
communication. Dr. Drewes research group is currently working on developing more predictive tools for 
the fate of trace organic chemicals in various reuse schemes using quantitative structural property 
relationships (QSPRs) coupled with process models. Dr. Drewes has published more than 160 journal 
papers, book contributions, and conference proceedings. He was awarded the 2007 AWWA Rocky 
Mountain Section Outstanding Research Award, the 2003 Dr. Nevis Cook Excellent in Teaching Award, 
the Quentin Mees Research Award in 1999, and the Willy-Hager Award in 1997. In 2008, he was 
appointed to the National Research Council Committee on Water Reuse as an Approach for Meeting 
Future Water Supply Needs. Since 2007, Dr. Drewes has held an Adjunct Professor appointment at the 
University of New South Wales, Sydney, Australia. 

 

 
 
 
 
CHEMIST FAMILIAR WITH THE DESIGN AND OPERATION OF ADVANCED LABORATORY METHODS FOR THE DETECTION 

OF EMERGING CONSTITUENTS 
 
Dr. Shane Snyder 
Director and Vice President 
Total Environmental Solutions, Inc. 
1402 Pueblo Drive 
Boulder City, Nevada 89005 
Phone: 702-743-9674 
Email: snyders22@cox.net 

 
Education: 

Ph.D., Zoology and Environmental Toxicology, Michigan State University 

B.A., Chemistry, Thiel College  

 

Dr. Shane Snyder is the co-founder and vice president of Total Environmental Solutions Inc (TES).  TES 
was founded in 1999 as a solutions-based company offering consulting and laboratory services to a 
diversity of government, municipal, and private sector clients.  Dr. Snyder also served as the R&D Project 
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Manager for the Southern Nevada Water Authority (SNWA) for over a decade.  He has published more 
than 90 manuscripts on the occurrence and fate of emerging contaminants in water.  In 1998, he was 
credited with the first discovery of natural and synthetic estrogens in North American waters.  Dr. 
Snyder also linked the occurrence of steroids in wastewater to potential endocrine impacts in fish in the 
late 1990’s.  In 2002, he was awarded one of the most comprehensive studies investigating the efficacy 
of conventional and advanced water treatment processes for the removal of endocrine disruptors and 
pharmaceuticals (AwwaRF 2758).  Dr. Snyder serves as an Associate Adjunct Professor of Chemistry at 
the University of Nevada, Las Vegas.  He has served two terms on the USEPA Federal Advisory 
Committee for the Endocrine Disruptor Screening Program and has served on two expert panels for 
USEPA’s Candidate Contaminant List III.  He is a member of the Research Advisory Council for the 
WateReuse Foundation and is a member of the American Water Works Association’s Water Science & 
Research Division Board of Trustees.  Dr. Snyder was one of six experts to testify before the US Senate 
regarding pharmaceuticals in US waters in April of 2008.  In 2009, Dr. Snyder’s research team published 
the first national survey of pharmaceuticals in US drinking water.  Beginning in 2010, Dr. Snyder has 
accepted the position of Professor of Chemical and Environmental Engineering at the University of 
Arizona.  He is also the Co-Director of the Arizona Laboratory for Emerging Contaminants at the 
University of Arizona.   
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Appendix B - Ecotoxicology Assessment  

Most water reuse practices tend to have limited impact on ecological receptors. Based upon 
the conceptual models discussed in Section 1 and reuse practices of interest to this Panel, 
urban irrigation and groundwater recharge operations are discussed for potential 
ecotoxicological effects.7 The two potential ecological receptors of interest identified in the 
conceptual models for groundwater recharge are fish and birds (Figures 1.1 and 1.2). The 
stocking of recharge basins with fish, which is not common practice, represents a unique 
potential exposure pathway for migratory birds and humans to CECs. Fish clearly represent a 
“worst-case” scenario for exposure to CECs based upon constant immersion within water, 
which may contain CECs. As such, fish are typically viewed as excellent bioindicators of 
exposure  (through bioaccumulation) and direct adverse effects of compounds in water. 

Two CECs have received extensive attention in the ecotoxicology community: the synthetic 

estrogen 17 -ethinylestradiol (EE2) and the non-steroidal anti-inflammatory pharmaceutical 
diclofenac. Experimental exposure of fish to EE2 in a Canadian lake caused significant 
population declines in fish and dramatic declines in South Asia vulture populations were 
observed following use of diclofenac in cattle rearing. EE2 is a potent feminizing agent in egg-
laying vertebrates. Studies in Canadian lakes indicated exposure to 5-6 ng/L to EE2 significantly 
diminished populations of fathead minnow after one year of exposure (Kidd, Blanchfield et al. 
2007). Although laboratory studies have indicated other CECs may possess similar estrogenic 
activities, with the exception of EE2, no single CEC has demonstrated significant population 
declines in the field. However, based upon a recent review of measured and predicted 
concentrations of EE2 in surface water, it appears that the exposure concentration of 5-6 ng/l 
of EE2 in the Canadian lake experiment was five to ten times higher than the highest 
concentrations expected in US surface water and that typical concentrations are substantially 
lower than that (Hannah, D'Aco et al. 2009). Consequently, the experimental Canadian Lake 
observations are not likely to be representative of conditions in most US surface waters and the 
dramatic effects observed in that experimental setting are not expected in US surface waters as 
a result of normal human-use of EE2.   

Because several species of fish are sometimes stocked within recharge basins that also 
serve recreational purposes (e.g., rainbow trout, largemouth bass, channel catfish), it is unclear 
whether fish populations are impaired within these systems. However, fish and other 
invertebrates within recharge basins may provide a means for dietary exposure to consumers in 
that “ecosystem”. Given the relatively rapid half-life of EE2 in fish (~50 hr with a 1 mg/kg 
intravenous dose) (Schultz, Orner et al. 2001), accumulation would not be likely unless fish 
were undergoing continual exposure, which may result in “pseudo-persistent” conditions 

                                                      
7
 However, uncertainty exists with regard to the potential effects of CEC concentrates (aka “brine”) resulting from 

reverse osmosis or other physical separation processes. In many cases, the brine streams are commonly blended 
with treated wastewater effluents prior to discharge to the ocean and virtually no published studies exist on their 
potential impacts. As noted above, the State Board, in cooperation with the Packard Foundation, established 
another Science Advisory Panel that was charged in January of 2010 to address questions related to CEC discharge 
to the ocean and exposure to human health and ocean life.) 
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(Daughton and Ternes 1999). Thus, although other species-dependent differences may be 
present, avian receptors should be free from risk due to dietary consumption of fish containing 
EE2. However, additional studies to confirm this hypothesis are necessary.   

While limited ecological risk may exist from EE2 in natural settings, dietary exposure of 
avian receptors to other CECs in contaminated prey has been reported in Pakistan and India 
where populations of endangered vultures (Gyps sp.) were significantly impacted by the 
consumption of carrion derived from livestock treated with the non-steroidal anti-in 
flammatory drug diclofenac (Oaks, Gilbert et al. 2004). Daily intake concentrations necessary to 
exceed LD50 values in these species were approximately in the mg/kg range. However, relative 
to North American species of turkey vulture or other species of birds which are more resistant 
than Gyps sp., more than 20-100 times greater concentrations of diclofenac would be necessary 
to observe similar pathological effects noted in Gyps sp. (Hussain, Khan et al. 2008). Given the 
ng/L concentrations of diclofenac observed in surface water or recycled water, and 
concentration-dependent bioconcentration factors (BCF) of 12–2732 in the liver, 5–971 in the 
kidney, 3–763 in the gills, and 0.3–69 in the muscle, respectively in rainbow trout (Schwaiger, 
Ferling et al. 2004), deterministic evaluations of exposure to effect indicate little risk to bird 
populations from diclofenac in the US. However, uncertainty continues to surround the 
potential risk of other CECs recently reported in fish across North America (Mottaleb, Usenko et 
al. 2009). While several recent studies have evaluated the effects of non-steroidal anti-in 
flammatory drugs in avian species, the effects of other CECs that accumulate in fish are limited. 
CECs that have shown elevated accumulation in fish are the synthetic fragrance musks of which 
galaxolide is a representative. Of additional concern is the effect of contaminant mixtures and 
unknown transformation products. 

Irrigation of urban landscapes (e.g., golf courses and sports fields, and parks) with recycled 
water is a common practice in California.  For example, one Northern California community 
typically utilizes 4,110 gallons/acre/day (0.15 inches/day8) applied from April to November (214 
days) for golf-course and sports fields (California 2009)9. Assuming concentrations of ng/L of 
CECs, approximately 3.5 mg of CEC could be loaded to each acre in a given year. CECs with high 
Koc values could bind to soils with high organic carbon content resulting in exposure to 
terrestrial organisms. Kinney et al. (2006a) evaluated the fate of 19 pharmaceutical residues in 

soils from 3 sites in Colorado irrigated with recycled water and reported loadings in the ng- g 

level with measured concentrations ranging from 0.02 to 15 g/kg dry soil. Several of the 
selected pharmaceuticals increased in total soil concentration at one or more of the sites. The 
four most commonly detected pharmaceuticals were erythromycin, carbamazepine, fluoxetine, 
and diphenhydramine. Given the low concentrations, uptake into terrestrial organisms, such as 
earthworms, would likely be limited. Kinney et al. (2008) evaluated uptake of multiple CECs 

                                                      
8
 Application rates will vary across the State (as well as across the nation) with more water utilized in dryer and 

hotter southern California climate conditions and less in northern climates.  For comparison purposes, information 
from Texas regarding landscape irrigation indicates that application rates vary from roughly 1,500 gallons/acre/day 
to 5,000 gallons/acre/day (USDA, 1994).  

9
 The City of Sunnyvale is located in the San Francisco Bay area. Sunnyvale has a mediterranean climate, with mild, 

moist winters and warm, very dry summers. 
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from biosolids into earthworms, bioaccumulation factors (BAFs) were relatively low and ranged 
from 0.05 (galaxolide) to 27 (triclosan). When concentrations of CEC in biosolids (mg/kg) are 

compared to concentration of soils treated with recycled water ( g/kg), bioaccumulation into 
terrestrial organisms seems unlikely especially with the limited BAFs. However, additional 
studies are needed to confirm these predictions and to better understand the effects of these 
compounds in trophic food webs. 
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Appendix C - Antibiotic Resistant Bacteria and Antimicrobials of Concern in 
Recycled and Drinking Water 

 

The cause of the prevalence of drug resistant bacteria in the United States is controversial 
and drug resistance in bacteria may in fact have many origins. The Panel was not charged with 
this important question and suggests that further research into this problem is necessary and 
may require resources at the Federal level. Concerns that California drinking water 
augmentation projects may add to the problem of antibiotic-resistant bacteria containing 
antibiotics and antimicrobials in trace amounts are not likely to be a problem in California water 
recycling programs, but they are addressed specifically below. The antibiotics of most concern 
due to their persistence in water reclamation processes include sulfamethoxazole, 
trimethoprim, and erythromycin, while the antimicrobials include triclosan and triclocarban (Al-
Ahmad, Daschner et al. 1999; Phillips, Casewell et al. 2004). The concentrations of these 
antibiotics and antimicrobials, and others, in finished water that is used for recharge projects 
are below levels that cause resistance to occur de novo (Watkinson, Murby et al. 2007) and 
thus are not likely to be the source of antibiotic resistance.   

There is keen interest in the potential health effects of drug resistant microbes, which are 
already present in the environment, potentially becoming resistant because of exposure to low 
concentrations of antibiotics. At sub-inhibitory doses, antibiotics may lead to increased 
resistance in bacteria – but the concentrations found in recycled water are at least three orders 
of magnitude lower than the concentrations needed for resistance (Watkinson, Murby et al. 
2007).  Special interest has been focused in methicillin-resistant Staphylococcus aureus (MRSA), 
in which the mecA gene mediates resistance (Börjesson, Melin et al. 2009). The dynamics of 
how MRSA and other antibiotic resistant microbes may flourish in wastewater treatment plants 
has been the concern of many health providers and the public at large. Treatment processes at 
reclamation facilities effectively reduced the amount of both MRSA and the mecA gene, 
however, did not eliminate them (Börjesson, Melin et al. 2009). In terms of public health 
concerns, the MRSA is the most feared. However, other bacteria, such as lysteria or E. coli, can 
also impact human health, thus forms of these microbes that are resistant to antibiotics should 
also be investigated. There is no doubt that treatment through wastewater plants reduces the 
number of pathogenic bacteria (Harwood, Levine et al. 2005; Rijal, Zmuda et al. 2009; Zhang, 
Marrs et al. 2009); however, there is controversy in the literature as to whether the reduction is 
sufficient (Harwood, Levine et al. 2005; Chang, Toghrol et al. 2007))  and whether the coliform 
assays used as surrogates are sufficient (Zhang, Marrs et al. 2009).    

In a study by Vilanova et al. (Vilanova, Manero et al. 2004)  the structure and composition 
of fecal coliforms and enterococcal bacterial populations were investigated in wastewater from 
five treatment plants employing conventional processes to gauge the extent of forms that were 
resistant to vancomycin and erythromycin. The origin of waste and sewershed size varied for 
the five plants. Bacterial populations were similar at all five of the plants that were tested, 
including the fraction of bacteria that were resistant to antibiotics. The antibiotic resistant 
bacteria were not selectively eliminated by conventional treatment but they were reduced. 
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Advanced treatment processes were not tested in this study. Oxidation as well as low- and 
high-pressure membrane filtration are likely to remove more than 99% of the bacteria 
(Bockelmann, Dorries et al. 2009). 

Findings from another study, conducted by the Metropolitan Water Reclamation District of 
Greater Chicago, supported the conclusion that secondary wastewater treatment effectively 
reduced the number of antibiotic resistant coliform bacteria and that the environments in the 
wastewater treatment facilities were not supportive of their growth (Rijal, Zmuda et al. 2009).  

People who consume antibiotics can and will excrete some of the antibiotics consumed, but 
more importantly they will also excrete antibiotic resistant bacteria. Thus the presence of these 
bacteria in the influents is probably from human sources. The amount of antibiotics excreted by 
humans is diluted in the receiving waters to concentrations that are not likely to convert the 
bacteria in wastewater treatment plants to antibiotic resistance. But this point is controversial 
(Rijal, Zmuda et al. 2009; Zhang, Marrs et al. 2009) and deserves more study. The possibility 
exists for antibiotic resistant bacteria that are excreted from humans to either evade treatment 
or to transfer antibiotic resistance to other bacteria within the water reclamation plant (Zhang, 
Marrs et al. 2009). Clearly the existence and raising concentrations of antibiotic-resistant 
bacteria in the environment are a national problem that requires further study to understand 
their origins and how to control them, however, it is the view of the Panel that the specific 
water reuse practices described in this report do not cause the problem nor add to it at the 
present time.    
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Appendix D - Federal Paradigm for Regulating CECs in Drinking Water 

 

History of Federal Regulation of Drinking Water 

The US Congress enacted the Public Health Service Act in 1912, which initiated studies to 
elicit the link between clean drinking water and human health. In 1962 this legislation was 
revised as the US Public Health Services Drinking Water Standards Revisions, which established 
regulations for 28 contaminants. The American Water Works Association endorsed the 1962 
standards as “minimum standards for all public water supplies”. Subsequently, all 50 states 
accepted these standards as either guidelines or regulations. The 1962 drinking water standards 
also provided some insight into concerns related to impaired waters from unintentional water 
reuse. While the standards specifically state that “The water supply should be obtained from 
the most desirable source which is feasible”, the document goes on the say that “If the source is 
not adequately protected by natural means, the supply shall be adequately protected by 
treatment”. Interestingly, the 1962 standards included alkyl benzene sulfonate (ABS), an anionic 
surfactant that was commonly used in detergents. The statement is made that “waters 
containing ABS are likely to be at least 10 percent of sewage origin for each mg ABS/liter 
present”. Also of pertinent interest was the use of carbon chloroform extract (CCE) in the 1962 
standards as an indicator of organic compounds in water. The CCE standard of 200 µg/L was 
established to “represent an exceptional and unwarranted dosage of the water consumer with 
ill-defined chemicals”. The ABS and CCE standards promulgated in 1962 demonstrate that the 
federal government understood that unintentional water reuse was indeed occurring and that 
the contamination of drinking water from a diversity of organic contaminants was possible. 
Moreover, these early standards began to pave the way for the use of chemical indicators and 
surrogate measurements in a regulatory framework. Congress created the USEPA in 1970 and 
subsequently authorized this branch of the federal government to ensure drinking water safety.   

 

The Safe Drinking Water Act 

In 1974, Congress passed the Safe Drinking Water Act (SDWA) to protect public health by 
regulating drinking water supplies. Throughout the United States, there were concerns that 
drinking water supplies were becoming tainted by industrial activities, agriculture, and 
wastewater effluents. The SDWA provides authority to the USEPA to establish and enforce 
national standards to protect against chemical and microbial health risks from drinking water.  
These national standards set enforceable maximum contaminant levels (MCLs) for biological 
and chemical contaminants, as well as treatment technologies in some cases, deemed to 
necessary for the protection of public health. The EPA drinking water standards require regular 
testing to assure that contaminants do not exceed their MCLs.  

States can apply to the USEPA for primacy, which grants the particular state the right to 
implement the SDWA requirements within the state. Every state in the US except for Wyoming 
and the District of Columbia have applied for and been subsequently granted primacy. This 
means that the state will enforce SDWA compliance and has the right to require more stringent 
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regulations than those specified in the SDWA. For instance, the state of California recently 
established an enforceable drinking water MCL of 6 µg/L for perchlorate in the absence of a 
federal MCL.   

The USEPA establishes national standards based on occurrence and risk to public health. 
The risk is estimated by establishing a health-based maximum contaminant level goal (MCLG) 
for the most sensitive population (i.e., children, pregnant women, the elderly, etc.). The MCLG 
is the level of a contaminant in drinking water below which no known or expected risk exists. 
The MCLG includes uncertainty factors (or safety factors) that are used to adjust for 
uncertainties or inadequacies in the data set used to develop the MCLG. The EPA then 
evaluates the types and costs of treatment to reduce the contaminant concentration and 
performs a cost-benefit analysis to identify an enforceable MCL as close to the MCLG as 
possible. The availability and reliability of analytical methods for detection and quantification of 
a contaminant may also influence the promulgated MCL. Additionally, every six years the EPA 
reviews the existing MCLs to determine if modifications are required based on new data or 
technology advancements.   

 

Safe Drinking Water Act and Unregulated Contaminants 

In order to assess the occurrence of contaminants suspected to impact drinking water, the 
USEPA established an Unregulated Contaminant Monitoring (UCM) program. The initial UCM 
round took place between 1988 and 1993, when 62 contaminants were monitored in 40 states.  
The resulting data became part of the Unregulated Contaminant Monitoring Information 
System (URCIS). The second round of UCM occurred between 1993 and 1997 and included data 
from 35 states on 48 (then) unregulated contaminants. In 1996, the SDWA was amended and 
the UCM program was significantly revised and a new Unregulated Contaminant Monitoring 
Regulation (UCMR) established. Under the UCMR the USEPA requires all large systems (>10,000 
customers) and a representative number of small systems (<10,001 customers) to monitor for 
no more than 30 unregulated contaminants specified by the EPA. Contaminants detected under 
the UCMR must be reported to customers in a Consumer Confidence Report issued by the 
system and reviewed by the state. The USEPA is required to review and update the UCMR every 
five years. The first UCMR (UCMR1) was issued in September 1999 and the second UCMR 
(UCMR2) was issued in January 2007. UCMR data are entered into the National Contaminant 
Occurrence Database (NCOD).   

The 1996 SDWA Amendments also mandated that the EPA publish a Candidate Contaminant 
List (CCL) every five years. The CCL contains contaminants that are known, or anticipated, to 
occur in US drinking waters and that may require future regulation.  Specifically, the CCL must 
address contaminants that: 

1) are not currently regulated under the SDWA 

2) may have adverse health effects 

3) are known or anticipated to occur in public water systems 

4) may require regulation under the SDWA 
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The USEPA selects up to 30 contaminants from the CCL for the UCMR; however, other 
contaminants may be added to the UCMR that were not included on a CCL. Every five years the 
USEPA must repeat the cycle of revising the CCL, make regulatory determinations for at least 
five of the CCL contaminants, and identify up to 30 contaminants for the UCMR. The USEPA 
released the first CCL (CCL1) containing 60 contaminants (50 chemical and 10 biological) in 
March 1998. The CCL1 specifically deferred the listing of 21 contaminants identified in the draft 
CCL as endocrine disruptors since the 1996 SDWA amendments specifically provided for the 
establishment of the Endocrine Disruptor Screening Program (EDSP). After the release of CCL1, 
the USEPA asked the National Research Council (NRC) for guidance in establishing a system to 
prioritize contaminants listed on the CCL (NRC 1999). The USEPA also asked the NRC to provide 
advice regarding the development of subsequent CCL’s by systematically identifying and 
prioritizing emerging contaminants. The NRC suggested that within one year of a CCL release, 
the USEPA use a three-part assessment for each contaminant listed. The suggested process 
would: 1) review existing health effects data, 2) review existing exposure data, and 3) review 
existing data on treatment and analytical methods. From these data, the NRC suggested that 
USEPA should then conduct a preliminary risk assessment followed by a separate decision 
document which indicates whether a contaminant is to be dropped from the list, be slated for 
additional research, or will be considered for regulation. The NRC further advised USEPA to 
conduct health advisories for all compounds that will remain on the CCL within three months 
after completion of initial decision documents. 

The NRC held a workshop on emerging drinking water contaminants in December of 1998 in 
conjunction the NRC Committee on Drinking Water Contaminants. The purpose of the 
workshop was “to present and discuss a dozen papers on emerging microbial and chemical 
drinking water contaminants, associated analytical and treatment methods, and existing and 
proposed environmental databases for their proactive identification and evaluation”. In 1999, 
the NRC published a report based on the workshop and subsequent deliberations of the 
committee (NRC 1999). The committee suggested that ideal CCLs should include the following: 

• Meet the statutory requirements of the 1996 SDWA amendments; 

• Identify the “entire universe of drinking water contaminants” before ranking; 

• Consider all routes of exposure, including dermal, inhalation, and ingestion; 

• Use the same identification and selection process for chemical and microbial 
contaminants; 

• Include mechanisms to identify similarities among contaminants and contaminant 
classes that can be used for evaluation of individual chemicals; and, 

• Result in a CCL that contains only contaminants that are truly relevant to human health. 

 

The committee recommended a two-step process that would prioritize chemicals from a 
broad universe to a preliminary CCL (PCCL) through screening criteria and expert judgment 
followed by use of a prioritization tool and expert judgment to develop the final CCL. The 
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committee estimated that the number of contaminants in the “chemical universe” could be 
close to 100,000 considering that the Toxic Substances Control Act inventory alone includes 
approximately 72,000 substances produced or imported at greater than 10,000 pounds/year.  
In 2001, the NRC published a report that provided more detailed information regarding the 
suggested approaches for moving contaminants from the universe to the PCCL and eventually 
to the CCL (NRC 2001). This NRC report suggested the use of selected attributes to evaluate the 
likelihood of a particular contaminant occurring at a concentration pose risk to public health 
through drinking water. This report also suggested the use of an algorithm in conjunction with 
expert opinion to more quickly and efficiently sort through vast amounts of data. In relationship 
to water reuse, the NRC committee specifically recommended the inclusion of “any constituent 
of wastewater treatment of septage” within the chemical universe. The committee also 
recommended the use of virulence-factor activity relationships, within which microorganisms, 
which have the “ability to survive wastewater treatment and to reenter drinking water”, are 
specifically addressed. The NRC reports became the foundation for the USEPA’s CCL process, 
but were not adopted in time for the development of the second CCL (CCL2). 

The CCL2 was published in February 2005 and contained 51 of the original 60 contaminants 
from CCL1. The USEPA determined that regulations were not required for the nine compounds, 
which were removed from CCL1. In order to move a contaminant from the CCL into regulation, 
the USEPA must show that regulation would provide a meaningful opportunity to reduce health 
risk. While the NRC emerging contaminant identification and prioritization scheme was not 
utilized for CCL2, the process would become largely utilized for the generation of the third CCL 
(CCL3). 

 

The Candidate Contaminant List 3 

The process used to develop the CCL3 was far more systematic and objective than the more 
subjective selection of contaminants used for CCL1 and CCL2. The CCL3 selection process 
utilized the expert opinions provided by the NRC as well as the National Drinking Water 
Advisory Council (NDWAC). This multi-step process includes three key elements: 

 Identification of a broad universe of potential biological chemical and chemical 
contaminants (CCL Universe); 

 Application of screening criteria based on potential occurrence and human health 
relevance (preliminary CCL or PCCL); and, 

 Selection of priority contaminants based on more detailed occurrence and health effect 
data as well as expert judgment, public comment, and external advisory committees 
(draft and final CCL). 

 

CCL3 Universe 

A draft of the CCL3 was released in February of 2008 and the final CCL3 was published in 
October of 2009 (Table D-1). Figure D.1 in the main text illustrates the general process utilized 
in the development of the CCL3. The CCL3 Universe is to encompass a wide array of potential 
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water contaminants, both chemical and microbial. The Universe includes not only compounds 
known or anticipated to occur in water supplies, but also releases to the environment and 
production volume.  Additionally, the Universe is to include contaminants with demonstrated 
or adverse health effects, regardless of occurrence data. Due to the wide array of potential 
data, the USEPA chose to follow the advice of the National Drinking Water Advisory Council, in 
relying primarily on easily accessible databases for the information that would be used to 
generate the CCL3 Universe. The accessibility became a highly limiting factor, as any database 
to be used must be electronically accessible and free of charge. The EPA initially identified some 
284 potential databases from which they could rely for populating the CCL3 Universe 
(http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_Chemicals_Universe_08-31-
09_508_v3.pdf); however, these databases were culled based on relevance, completeness, 
redundancy, and retrievability (Figure D-1). Of the 284 databases initially identified, 142 were 
eliminated due to relevance, 12 eliminated due to completeness, 26 eliminated due to 
redundancy, and 64 eliminated due to retrievability. In terms of relevance, several databases 
were found to contain only descriptive data such as used for pesticide labeling or nomenclature 
that is not related to occurrence or toxicity were not utilized. Completeness was gauged based 
on minimum documentation and quality requirements, such as contact information, description 
of data elements, information on how data were obtained, and whether or not data were peer-
reviewed. Redundancy was assessed to avoid duplication and when redundant data was found, 
the more comprehensive database was utilized.  Retrievability was a major limitation for 
database inclusion, and databases that provided information in tabular format that could be 
extracted and formatted was used while databases providing information in text format were 
generally not considered. However, databases with simple lists in text format that could be 
easily imported were sometimes used. Due to transparency concerns, databases that were 
available only by subscription (fees) or were proprietary were not utilized. Ultimately only 40 
databases were utilized (Table D-2). The limitations on the databases that were screened are 
likely the greatest hindrances in utilizing the CCL3 for prioritization of CECs in reuse systems. 
While some databases are clearly relevant, much of the data published in peer-reviewed 
literature and in various reports would not have been considered in the CCL3 Universe. 
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Table D-1.  List of Contaminants on USEPA’s CCL3 

 
Common Name - Registry Name 

1,1,1,2-Tetrachloroethane 

1,1-Dichloroethane 

1,2,3-Trichloropropane 

1,3-Butadiene 

1,3-dinitrobenzene 

1,4-Dioxane 

17-a-estradiol 

17-b-estradiol 

1-Butanol 

2-Methoxyethanol 

2-Propen-1-ol 

3-Hydroxycarbofuran 

4,4'-Methylenedianiline 

Acephate 

Acetamide 

Acetochlor 

Acetochlor ethane sulfonic acid (ESA) 

Acetochlor oxanilic acid (OA) 

Acrolein 

Alachlor ethanesulfonic acid (ESA) 

Alachlor OA 

alpha.-Hexachlorocyclohexane 

Aniline 

Bensulide 

Benzyl chloride 

bromochloromethane 

Captan 

chlorate 

Chloromethane (Methyl chloride) 

Clethodim 

Cobalt 

Cumene hydroperoxide 

Cyanotoxins 

Dicrotophos 

Dimethipin 

Dimethoate 

Disulfoton 

Diuron 

equilenin 

equilin 

Erythromycin 
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estriol 

estrone 

ethinyl estradiol 

Ethoprop 

Ethylene glycol 

Ethylene oxide 

Ethylene thiourea 

Fenamiphos 

Formaldehyde 

Germanium 

HCFC-22 

Hexane 

Hydrazine 

Methamidophos 

Methanol 

Methyl bromide Bromomethane 

Methyl tert-butyl ether 

Metolachlor 

Metolachlor ESA 

Metolachlor OA 

mestranol 

Molinate 

Molybdenum 

Nickel 

Nitrobenzene 

Nitroglycerin 

N-Methyl-2-pyrrolidone 

N-Nitrosodiethylamine 

N-nitrosodiethylamine (NDEA) 

N-nitrosodimethylamine (NDMA) 

N-nitroso-di-n-butylamine (NDBA) 

N-nitroso-di-n-propylamine (NDPA) 

N-nitrosomethylethylamine (NMEA) 

N-nitrosopyrrolidine (NPYR) 

norethindrone 

n-Propylbenzene 

o-Toluidine 

Oxirane, methyl- 

Oxydemeton-methyl 

Oxyfluorfen 

Perchlorate 

Permethrin 

PFOA 

PFOS 

Profenofos 
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Quinoline 

RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) 

sec-Butylbenzene 

Strontium 

Tebuconazole 

Tebufenozide 

Tellurium 

Terbufos 

Terbufos sulfone 

Thiodicarb 

Thiophanate-methyl 

Toluene diisocyanate 

Tribufos 

Triethylamine 

Triphenyltin hydroxide (TPTH) 

Urethane 

Vanadium 

Vinclozolin 

Ziram 

 

 

 



CEC Panel FINAL REPORT – June 2010  Appendix D 

 D - 9 

 

 

 

 

Figure D-1. Databases utilized in the CCL3 selection process
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Table D-2.  Data sources utilized for defining the USEPA CCL3 universe 

  Name of Data Source   

1  Agency for Toxic Substances and Disease Registry (ATSDR) Comprehensive Environmental Response, Compensation, and Liability Act 
(CERCLA) Priority List   

2  ATSDR Minimal Risk Levels (MRLs)   

3  Chemical Toxicity Database - Ministry of Health and Welfare, Japan   

4  Chemical Update System/Inventory Update Rule (CUS/IUR) – EPA   

5  Cumulative Estimated Daily Intake/Acceptable Daily Intake (CEDI/ADI) Administration (FDA)   Database – US Food and Drug   

6  Database of Sources of Environmental Releases of Dioxin-Like Compounds in the United States – EPA   

7  Distributed Structure Searchable Toxicity Public Database Network (DSSTox) – EPA   

8  Everything Added to Food in the United States (EAFUS) Database – FDA   

9  Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) List – EPA  

10  Generally Regarded As Safe (GRAS) Substance List – FDA   

11  Guidelines for Canadian Drinking Water Quality (CADW): Summary of Guidelines – Health Canada  

12  Hazardous Substances Data Bank (HSDB) – National Library of Medicine (NLM)  

13  Health Advisories (HA) Summary Tables – EPA   

14  High Production Volume (HPV) Chemical List – EPA   

15  Indirect Additives Database – FDA   

16  Information Collection Rule (ICR) Federal Database (DBP ICR) – EPA   

17  Integrated Risk Information System (IRIS) – EPA  

18  International Agency for Research on Cancer (IARC) Monographs   

19  International Toxicity Estimates for Risk (TERA)   (ITER) Database – Toxicology Excellence in Risk Assessment 

20  Joint Meeting On Pesticide Residues (JMPR) - 2001 Inventory of Pesticide Evaluations – Organization (WHO), Food and Agriculture 
Organization (FAO)   

21  National Drinking Water Contaminant Occurrence Database (NCOD) - Round 1&2 – EPA   

22  NCOD - Unregulated Contaminant Monitoring Regulation (UCMR) – EPA   

23  National Inorganics and Radionuclides Survey (NIRS) – EPA  

24  National Pesticide Use Database – National Center for Food and Agricultural Policy (NCFAP)   

25  National Reconnaissance of Emerging Contaminants (NREC) Toxic Substances Hydrology Program   – United States Geological Survey 
(USGS)  

26  National Toxicology Program (NTP) Studies   

27  National Water Quality Assessment (NAWQA) – USGS   

28  OSHA 1988 Permissible Exposure Limits (PELs) – National Institute for Occupational Safety and Health (NIOSH)   

29  Pesticide Data Program (PDP) – United States Department of Agriculture (USDA)  

30  Pesticides Pilot Monitoring Program (PPMP) - USGS/EPA  

31  Risk Assessment Information System (RAIS) - Department of Energy - Chemical Factors  

32  RAIS - Department of Energy - Health Effects Data  

33  State of California Chemicals Known to the State to Cause Cancer or Reproductive Toxicity   

34  Substances Registry System (SRS) – EPA  

35  Syracuse Research Corporation (SRC) – BIODEG  

36  The Toxics Release Inventory (TRI) – EPA   

37  Toxic Substances Control Act (TSCA) List – EPA  

38  Toxicity Criteria Database - California Office of Environmental Health Hazard Assessment (OEHHA)   

39  University of Maryland - Partial List of Acute Toxins/Partial List of Teratogens  

40  WHO Guidelines for Drinking Water Quality: Summary Tables   
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From the 40 databases screened, nearly 26,000 substances were identified. Therefore, 
USEPA developed a pre-Universe selection process to evaluate those compounds that were 
most suitable for inclusion in the Universe (Figures D-2 and D-3). The initial process essentially 
determined whether or not a contaminant had health effects (HE) and occurrence data. If only 
HE data were available, these contaminants would be screened to determine if the 
contaminant was toxicologically relevant (see section of PCCL process regarding relevance). 
Chemicals for which only occurrence data were available were sequentially evaluated for 
finished or ambient source water data, release data, or production of over 1 billion 
pounds/year (Table D-3). This pre-Universe selection process identified 7,720 chemicals, which 
went on to the final selection process shown in Figure D-3. The final selection process first 
evaluated whether or not primary drinking water standards already existed, which eliminated 
1,009 chemicals (mostly radionuclides and compounds with multiple isomers, such as PCBs).  
Four hundred and thirty substances that are considered mixtures, such as petroleum products 
and resin acids, were eliminated from further consideration. Also, substances that are not 
“chemically defined” (such as wood dust and surgical implants) were eliminated. Lastly, two 
substances were removed because they are considered biological and would not be considered 
within the chemical Universe. The USEPA also considered 174 contaminants that were 
nominated through the public input process and 132 of those nominated were already 
considered. The remaining nominations were evaluated through the same criteria as all other 
chemicals for consideration of the CCL3 Universe. Once the draft CCL3 was released in February 
of 2008, USEPA subsequently received 177 comments. From these comments, 30 additional 
contaminants were added to the Universe. 

 

 

Figure D-2. Initial process for selecting the CCL3 Universe  
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Figure D-3. Final selection process for CCL3 Universe (Exhibit 7) 

 

Table D-3.  Occurrence data sources without health effects 

Occurrence Data Type Type of Data; Typical Source Number of Chemicals without 
Health Effects 

Finished and ambient water quality 
data 

Measured water occurrence; UCMR; 
NAWQA 

42 

Environmental release Amount released; TRI; pesticide 
application 

36 

Production Annual production volume; CUS/IUR 9,344 

Listed as food additive or only on list 
with general physical or chemical 
properties 

Generally regarded as safe 
substance list (FDA); RAIS (DOE) 

4,122 
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The PCCL screening process 

The next stage in the development of the CCL3 was the screening of the chemical universe 
to create a preliminary candidate contaminant list (PCCL) based on health and occurrence data. 
The PCCL prioritization scheme categorizes the information available from the Universe into 
toxicity and occurrence data elements, which are subsequently weighed on a variety of key 
factors. For health effects data elements, the two key categories are potency (dose-response) 
and severity (mostly carcinogenic potential). Although the availability of a lowest observed 
adverse effect level (LOAEL) was most desirable, other types of data were also considered for 
the PCCL. The health effects data were segregated into five toxicity categories based upon the 
type of data and potency (Table D-4). For carcinogens, the USEPA relied upon categorical data 
for the probability of cancer and usually included slope factors. These data also were 
segregated into toxicity categories for inclusion in the PCCL selection process 
(http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3Chem_Screening_to_PCCL_08-31-
09_508v2.pdf). 

 

Table D-4.  Potency Measures for toxicity categories 

(from http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3Chem_Screening_to_PCCL_08-31-09_508v2.pdf) 

 

 

In order to evaluate occurrence, the USEPA considered data from measured concentrations 
in ambient and finished water, total releases to the environment (from state data), pesticide 
application rates, and production volume. The USEPA also considered descriptive data, which 
includes compounds, such as disinfection byproducts and drinking water treatment chemicals.  
For both finished and ambient water quality data, the USEPA considered the percent of samples 
with detections, percent of sites with detections, and the median, maximum, and mean 
concentrations detected. In addition, the USEPA considered Toxics Release Inventory and the 
National Pesticide Use Database to determine total releases to the environment (lbs/year), 
number of states with documented releases, pesticide application (lbs/year), and number of 
states with pesticide application. Data from the Toxic Substances Control Act (TSCA) production 
volume data reported in the Chemical Update System/Inventory Update Rule, which includes 
USEPA’s High Production Volume chemicals list, was also considered in the exposure 
assessment. Disinfection byproducts and water treatment chemical information was gathered 
from DSS-Tox database and he NSF standard 60, respectively. Because of the high propensity 
for DBPs and water treatment chemicals to persist in drinking water, the USEPA moved these 
categories forward for consideration to PCCL even when limited occurrence data were available 
(as long as they fell into toxicity categories 1 or 2). Because occurrence data often fall into 
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multiple categories (i.e., finished water concentration and production volume data), the USEPA 
established the following hierarchy: 

 

Finished Water = Ambient Water > Environmental Release Data > Production Data 

 

This hierarchy becomes especially important in the discussion of the inclusions of steroid 
hormones in the final CCL3, since finished drinking water measurements were essentially non-
detectable (Benotti et al. 2009) yet ambient water concentrations used by USEPA were 
extremely large. This means that water treatment is not considered in the selection of the CCL3 
and the most conservative values are used in the prioritization.   

An integrated assessment combining the occurrence and health effects data are provided in 
Table D-5. The asterisks in Table D-5 signify where calculated drinking water equivalent levels 
(DWEL) thresholds fell within each toxicity category. For instance, for category 1 toxicity (most 
toxic), any concentration or even non-detect would move the chemical into the PCCL. While in 
toxicity category three, the DWEL threshold was calculated to be 40 µg/L. Therefore, the bold 
line that separates the grey from the white area in Table D-5 is the dividing line between PPCL 
inclusion (white) and PPCL exclusion (grey).   

 

Table D-5. Comparing health effects to ambient & finished water concentrations for PCCL (from 
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3Chem_Screening_to_PCCL_08-31-09_508v2.pdf) 

 

 

A similar PPCL inclusion/exclusion scenario was developed for comparing release data to 
toxicity categories (Table D-6). Again, the shaded area indicates compounds not included in the 
PCCL while the white areas indicate inclusion on the PCCL. For instance, a compound released 
at 900,000 lbs/year in toxicity category 4 would not be considered for the PCCL, while a 
compound with the same release but in toxicity category 3 would be included.   
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Table D-6. Comparing health effects to release data for PCCL (from 
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3Chem_Screening_to_PCCL_08-31-09_508v2.pdf) 

 

 

An analogous assessment was performed for production volume data (Table D-7). Once 
again, the shaded area represents compounds that would not be considered for PCCL while the 
white areas indicate compounds that would be included on the PPCL. 

 

Table D-7. Comparing health effects to production data for PCCL (from 
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3Chem_Screening_to_PCCL_08-31-09_508v2.pdf) 

 

 

After the initial screening, USEPA applied quality assurance measures and conducted 
detailed evaluations of those chemicals falling near the border between inclusion and exclusion 
on the PPCL. Using this approach, the USEPA screened the chemical Universe of more than 
6,000 compounds and selected 561 for consideration on the PCCL. The complete list of PCCL 
chemicals along with their corresponding data sheets can be found at 
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/Final%20PCCL%203%20Contaminant%20Inf
ormation%20Sheets.pdf. 

 

http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/Final%20PCCL%203%20Contaminant%20Information%20Sheets.pdf
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/Final%20PCCL%203%20Contaminant%20Information%20Sheets.pdf
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From PCCL to CCL  

From the 561 chemicals included on the PCCL, the USEPA applied classification models 
based on past expert decisions and advice from the NRC and NDWAC. The USEPA classified 
chemicals based on attributes based on similarities of qualities or traits that are indicative of 
propensity for occurrence and health effects. Several algorithms were then developed and 
evaluated to provide for rapid and reproducible prioritization. Once attributes were established 
and a suitable algorithm applied, the USEPA used expert review as a final analysis prior to 
releasing the draft CCL.   

The USEPA used the attributes of potency and severity to describe health effects and the 
attributes of prevalence and magnitude to describe occurrence. In the absence of occurrence 
data, the USEPA sometimes used persistence and mobility environmental fate properties. 
Attributes given a numerical scoring system (where higher numbers equate to greater concern) 
in order to assess the relative importance of a particular attribute for each chemical.  

Health effects attributes of severity and potency are interrelated. Potency represents the 
lowest dose of a chemical that induces an adverse effect, while severity is the adverse health 
effect and is ranked according to significance (i.e., cancer versus skin irritation). A rather 
detailed and lengthy description of how potency and severity attribute scores were determined 
is provided at http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-
09_508.pdf. In brief, potency scores ranged from 1 – 10 and were generally based upon 
reference doses (RfD), LOAEL/NOAEL, LD50, and cancer risk (Table D-8). The severity attribute 
scoring is far more complex and perhaps more subjective (Table D-9). For detailed descriptions 
regarding severity scoring, see Exhibit A.3 at 
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-09_508.pdf. 

For occurrence attributes, both prevalence and magnitude are considered. Prevalence 
scoring is essentially the frequency of occurrence or release/production, and is based upon 
both a hierarchy as discussed previously (Table D-6). Magnitude is essentially the quantity of 
concentrations reported, application/release data, or persistence/mobility data (Table D-10). In 
order to determine the persistence/mobility score, the corresponding value from Table D-11 
and Table D-12 are averaged and the averaged value multiplied by 10/3 in order to determine 
persistence/mobility attribute score (Table D-13).   

 

http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-09_508.pdf
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-09_508.pdf
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-09_508.pdf
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Table D-8. Potency attributes 

(from http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-09_508.pdf) 

 

 

 

Table D-9. Severity attribute generalize scoring 

Severity 
Score Score Definition 

1 No Adverse Effect 

2 Cosmetic Effect 

3 Reversible Effects 

4 Cellular/Physiological Changes that Could Lead to Disorders 

5 
Significant Functional Changes that are Reversible or Permanent Changes that are of 
Minimal Toxicological Significance 

6 Significant, Irreversable, Nonlethal Conditions or Disorders 

7 Developmental or Reproductive Effects Leading to Major Dysfunction 

8 Tumors or Disorders Likely Leading to Death 

9 Death 

 

 

http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-09_508.pdf
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Table D-10. Hierarchy and attribute score for prevalence 

 

 

 

Table D-11. Hierarchy and attribute score for magnitude 
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Table D-12. Mobility scale 

 Units 1 (Low) 2 (Medium) 3 (High) 

Organic Carbon Partitioning Coefficient 
(Koc) mL/g >1,000 100-1,000 <100 

Log Octanol/Water Partitioning Coefficient 
(Kow) dimensionless >4 1-4 <1 

Soil/Water Distribution Coefficient (Kd) mL/g >10 1-10 <1 

Henry's Law Coefficient (Kh) atm-m3/mol >10
-3

 10
-7

 - 10
-3

 <10
-7

 

Henry's Law Coefficient (Kh) dimensionless >0.042 0.042-4.2x10
-6  

 <4.2x10
-6

 

Solubility Mg/L <1 1-1,000 >1,000 

Percent in water (PBT Profiler) dimensionless ≤ 25 >25-50 > 50 

 

Table D-13. Persistence scale 

 Units 1 (Low) 2 (Medium) 3 (High) 

Half Life (t1/2) Time days months recalcitrant 

Measured Degradation Rate Time days months recalcitrant 

Modeled Degradation Rate (PBT 
Profiler) Time days months recalcitrant 

 

Once the attributes had been assigned for all PCCL chemicals, these attributes were 
evaluated using three preferred models to determine list, no list, or questionable status for 
CCL3. The three models were Artificial Neural Network (ANN), Classification Tree with Linear 
Nodes (Quest), and Linear Regression (Linear). USEPA experts then evaluated the model output 
and further evaluated the chemicals by calculation of a health reference level (HRL). Table D-14 
provides the equations used by the EPA, with corresponding uncertainty factors, for the 
calculation of the HRL. Note that a relative source contribution of 0.2 is used in each of the non-
cancer equations. The HRL is then compared to the 90th percentile concentration in ambient or 
finished water. For compounds without measured data (primarily pesticides) the USEPA would 
use an estimated environmental concentration calculated from models. If the corresponding 
ratio between the HRL and the occurrence value was less than or equal to 10, the USEPA would 
list the contaminant on the draft CCL3.   

Another post-model evaluation was the relative ranking of certainty of the data into low, 
medium, and high certainty based upon the type of data that was used to assign attributes. For 
instance, measured concentrations coupled with reference doses or cancer slope factors were 
considered high certainty, while health effects based on LD50 and occurrence based on 
production volumes were considered low certainty. 
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The draft CCL3 was reviewed by an external panel of experts and stakeholders, and then 
published on February 21st, 2008 in Federal Register. The final CCL3 included 106 chemicals, 
including: 

 - 36 chemicals in the high certainty bin; 

 - 23 pesticides in the medium certainty bin (with modeled occurrence data); 

 - 26 pesticides and chemicals in the medium certainty bin (with application or release         
occurrence data); and, 

- 19 chemicals originally in the low or medium certainty bin that USEPA reevaluated 
using supplemental data (including data from commentators)  

 

Table D-14. Derivation of the health reference level (HRL) (from 
http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-09_508.pdf) 

 

 

The Panel found the CCL process utilized by USEPA, and developed in consultation with the 
NAS, NDWAC, SAB, and various expert panels, to be rigorous and transparent.  However, the 
Panel recognizes that the key missing elements are mostly related to the data appropriate to 
California recycled water.  The CCL databases would not have commonly captured the MEC 
data from California utilities nor have captured the majority of water reuse literature such as 
WateReuse Foundation and NWRI reports.  When toxicological data were available within the 
CCL dossiers they were considered by the panel. However, for CECs with measured 
environmental concentrations in California that were not considered in the CCL process, the 
Panel recognizes the need to utilize other databases or screening tools described later. 

http://www.epa.gov/safewater/ccl/pdfs/ccl3_docs/CCL3_PCCLtoCCL_08-31-09_508.pdf
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Appendix E - Summary of California Water Recycling Regulations and Additional 
Discussion of California Department of Health Groundwater Recharge Reuse 
Regulations 

 
 The following is a more detailed discussion the key California regulations (i.e., current and 
draft), criteria, and policy that impact reuse projects. 
 
Summary of California Enabling Legislation for Recycling Schemes 

 Porter-Cologne Water Quality Control Act of the California Water Code (CWC) - The 
Porter-Cologne Act of the CWC is the main regulation that gives the authority and 
responsibility to the RWBs to establish water quality objectives, to prescribe and 
enforce requirements for waste discharge to protect surface and groundwater quality, 
and, in consultation with DPH, prescribe and enforce reclamation requirements. Under 
the CWC, Waste Discharge Requirements (WDRs) are issued by the RWBs that contain 
the water quality objectives, effluent limits, and other requirements that are used to 
regulate reclamation projects. The State has a policy to promote the use of recycled 
water to the maximum extent in order to supplement existing surface and ground water 
supplies to help meet water needs (CWC sections 13510-13512). One of the primary 
conditions on the use of recycled water is protection of public health (CWC sections 
13521, 13522, 13550(a)(3)). In addition, the 1977 amendments to the CWA required 
publicly owned treatment works (POTWs) to ensure compliance with the pretreatment 
standards by each significant local source introducing pollutants subject to pretreatment 
standards into a POTW. To meet the requirements of the 1977 amendments, the USEPA 
developed the General Pretreatment Regulations for Existing and New Sources of 
Pollution, which are further discussed in Appendix H. 

 

 SWRCB Recycled Water Policy - In February 2009, the SWRCB adopted an updated 
Recycled Water Policy (Resolution No. 2009-0011). The goal of the Policy is to increase 
the use of recycled water while protecting groundwater quality. The Policy states that 
local water and wastewater entities, together with salt/nutrient contributing 
stakeholders, will fund locally driven and controlled collaborative processes open to all 
stakeholders to develop salt/nutrient management plans for each groundwater basin 
/sub-basin in California. The policy also attempts to incorporate the most current state-
of-the-science on CECs into regulatory policies for use by various state agencies. As a 
part of this policy, Southern California Coastal Water Research Project (SCCWRP) was 
asked to convene a Science Advisory Panel of six experts to provide recommendations 
to the SWRCB. The plan development processes must include compliance with California 
Environmental Quality Act (CEQA) and participation by the RWB staff. Each plan’s 
complexity depends on a variety of site-specific factors including, but not limited to, size 
and complexity of the basin, source water quality, stormwater recharge, hydrogeology, 
and aquifer water quality. The policy recommends that priority be given to those basins 
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identified as priority basins by the Groundwater Ambient Monitoring Assessment 
(GAMA) program.  

 

 SWRCB Nondegradation Policy - In 1968 the SWRCB adopted Resolution No. 68-16, 
entitled " Statement of Policy with Respect to Maintaining High Quality Waters in 
California". This policy requires the continued maintenance of existing high quality 
waters, and provides conditions under which a change in water quality is allowable. A 
change must be consistent with maximum benefit to the people of the State, not 
unreasonably affect present and anticipated beneficial uses of water, and not result in 
water quality less than that prescribed in water quality control plans or policies.  

 

 RWB Basin Plans - The CWC requires all RWBs to develop, adopt and implement a Water 
Quality Control Plan (Basin Plan). The Basin Plan includes three basic components:  
waters of the state and associated beneficial uses (potential and existing); water quality 
objectives necessary to protect the uses; and, an implementation plan and time 
schedule for achieving the water quality objectives. Some of RWBs have specific water 
recycling guidance and/or implementation criteria designed to enhance the feasibility of 
water recycling projects (e.g., relax surface and groundwater quality objectives based on 
technical reports demonstrating that the revised objectives would still protect existing 
beneficial uses fully while minimizing the need for unnecessary treatment, and 
streamflow augmentation to enhance or add riparian habitat and fisheries beneficial 
uses by relying on streambeds for transporting and/or recharging recycled water). 

 

California Department of Public Health 

The RWBs must consult with and consider recommendations of the Department of Public 
Health (DPH) when issuing waste discharge/water recycling requirements (CWC section 13523). 
The statute requires the DPH is to establish uniform statewide recycling criteria for the various 
uses of recycled water to assure protection of public health where recycled water use is 
involved (CWC section 13521). DPH has promulgated regulatory criteria in Title 22, Division 4, 
Chapter 3, section 60301 et seq. of the CCR. DPH regulatory criteria include specified approved 
uses of recycled water, numerical limitations and requirements, treatment method 
requirements and performance standards. DPH regulations allow use of alternate methods of 
treatment in some cases, so long as the alternate methods are determined by DPH to provide 
equivalent treatment and reliability. 

A 1996 Memorandum of Agreement (MOA) between the DPH, State Water Resources Control 
Board, and the regional water boards on the use of recycled water allocates primary areas of 
responsibility and authority between these agencies. The MOA provides methods and 
mechanisms necessary to assure ongoing and continuous future coordination of activities 
relative to the use of recycled water in California. 

To protect public drinking water supplies, the DPH also has regulations to prevent cross 
connections between recycled water systems and potable water systems. Local health 
departments and the DPH have enforcement authority over these cross connection prevention 
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regulations. The California Building Standards Commission sets plumbing standards for use of 
recycled water in buildings and industries. A summary of key regulations is provided below. 

 

 California Code of Regulations (CCR), Title 22 - The CWC requires the DPH to establish 
statewide reclamation and public health criteria for each type of recycled water use 
(Section 13521). DPH Wastewater Reclamation Criteria are contained in Title 22, 
Division 4 of the CCR. A summary of the Title 22 criteria is presented in Table 3.1. Title 
22 criteria cover three basic areas: standards for bacterial quality, levels and types of 
treatment required for a specific recycled water use, and standards for reliability of the 
reclamation plant. The DPH is responsible for the review of all proposed reclamation 
projects and discharge permits for consistency with Title 22 criteria. In addition, 
although the quality of recycled water can be produced at a level that is acceptable for 
full body contact activities and the irrigation of food crops, a number of additional 
precautions are also implemented to protect public health. For example: 

 

 Recycled water pipes are colored purple and appropriately marked;   

 Exposed air vents and appurtenances are labeled;  

 Sprinkler heads and valves are marked indicating recycled water; 

 Hose bibs are generally made inaccessible to the public; 

 Irrigation times are adjusted and overspray minimized to reduce public contact; 

 Signage and postings are provided to notify the public; 

 Back-flow prevention devices and where necessary air-gaps are provided to 
protect potable water; and,  

 Cross-connection inspections are conducted to protect potable water supplies.  

 

 DRAFT Groundwater Recharge Reuse Regulations  (CDPH 2008) - The draft recharge 
regulations address the supplementing of groundwater through surface or subsurface 
application of treated municipal wastewater prior to eventual extraction via drinking 
water wells for potable use. The proposed California criteria for groundwater recharge 
reflect a cautious approach toward potential short and long-term health concerns.  The 
criteria rely on a combination of controls intended to maintain a microbiologically and 
chemically public health protective groundwater recharge operation and protect current 
and future potable groundwater supplies. The criteria specify source control, 
wastewater treatment processes, water quality, recharge methods (i.e., surface 
spreading versus direct injection), dilution, extraction well location, and monitoring 
frequency and location. DPH requires monitoring of additional constituents for 
unregulated chemicals (e.g., chromium-6, diazinon, 1,4-dioxane, the nitrosamine N-
nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane) using drinking water 
analytical methods, where available and practicable, and will specify other methods 
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where necessary (e.g., for certain endocrine disrupting chemicals, pharmaceuticals, 
personal care products). DPH notes that monitoring for these chemicals—or categories 
of chemicals—is a diligent way of assessing and verifying recycled municipal wastewater 
quality characteristics, which can be useful in addressing issues of public perception 
about the safety of recharge projects. The proposed regulations have undergone several 
modifications since the early 1990’s (see additional discussion is contained in Appendix 
E). 

 

 Basis of DPH Approval of Surface Water Augmentation with Recycled Water - The 
Department of Public Health and the Department of Water Resources convened the 
California Potable Reuse Committee, following the initial approval of the San Diego 
indirect potable reuse proposal to augment a surface water reservoir, to identify the 
conditions necessary for safe surface water augmentation throughout California. “A 
Proposed Framework for Regulating the Indirect Potable Reuse of Advanced Treated 
Recycled Water by Surface Water Augmentation” (Framework) was produced by the 
committee. The California Recycled Water Task Force was created by statute in 2001 
and was tasked, in part, to evaluate the need to reconvene the California Potable Reuse 
Committee to update their findings in the Framework. The Task Force concluded (Water 
Recycling 2030 – Recommendations of California’s Recycled Water Task Force, State of 
California, 2003, Recommendation 6.3) that it was not necessary to revisit the 
Framework and that the State should be able to make determinations regarding indirect 
potable reuse based on the following publications: 

 
 “Report of the Scientific Advisory Panel on Groundwater recharge with 

Reclaimed Water”, State of California, 1987; 

 “Issues in Potable Reuse”, NRC, 1998; 

 “A Proposed Framework for Regulating the Indirect Potable Reuse of Advanced 
Treated Reclaimed Water by Surface Water Augmentation”, State of California, 
1996; and, 

 DPH draft groundwater recharge regulations (August 5, 2008). 

 

 Proposed 1996 Framework for Regulating Indirect Potable Reuse by Surface Water 
Augmentation - In May 1993 a California Potable Reuse Committee was formed by the 
DPH and the California Department of Water Resources to look into the feasibility and 
safety of potable reuse of recycled water following advanced treatment. The members 
concluded that planned indirect potable reuse of advanced treated recycled water using 
surface water reservoirs is feasible under the following six specific criteria:  

 
1. Application of Best Available Technology in advanced wastewater treatment with the 

treatment plants meeting operating criteria; 
2. Maintenance of appropriate retention times based on reservoir dynamics; 
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3. Maintenance of advanced wastewater treatment plant reliability to consistently meet 
primary microbiological, chemical, and physical drinking water standards; 

4. Surface water augmentation projects using advanced treated recycled water must 
comply with applicable State of California criteria for groundwater recharge for direct 
injection with recycled water; 

5. Maintenance of reservoir quality; and,  
6. Provision for an effective source control program.  

 
Other project approval considerations identified in the Framework include: 

1) Independent Monitoring Oversight Authority. This authority would be appointed by the 
CDPH and RWQCB to provide a third-party review of operational, regulatory, and 
environmental issues associated with the project;    

2) Coordination. Coordination between water reclamation agencies, regulatory agencies, 
and agencies responsible for public water systems should be instituted in both formal and 
informal channels; 

3) Operator Training and Certification. Operator training and certification programs must 
assure reliable operation of advanced treatment facilities; and,  

4) Source Aesthetic Quality. Use of advanced treated recycled water should not negatively 
impact the aesthetics (taste, odor, and appearance) or consumer acceptance of the public 
drinking water supply. 

 

Additional Discussion of California Department of Health Groundwater Recharge Reuse 
Regulations10 

In the late 1980s, the California Department of Public Health (CDPH), formerly known as 
California Department of Health Services (CalDHS), developed draft criteria for the use of 
recycled municipal wastewater to recharge groundwater basins that are sources of domestic 
water supply (Crook et al., 2000). The CDPH criteria, which set forth the agency’s approach to 
writing permits for indirect potable reuse systems, have been updated several times but have 
never been approved or finalized. The CDPH draft groundwater recharge criteria are designed 
to ensure a groundwater supply that meets all the drinking water standards and other 
requirements more specific to water derived from wastewater effluent (CDPH, 2007b). In 
formulating the proposed criteria, CDPH considered both acute health effects from microbial 
pathogens and potential long-term health effects associated with chemical constituents, 
particularly trace organics (Geselbracht and Crook 2000). After receiving the final report 
prepared by a science advisory panel (SAP) submitted to the state in 1987, CDPH selected TOC 
limits in wastewater effluent prior to recharge as a means of ensuring the lowest possible 
concentration of unregulated wastewater-derived organic contaminants (Robeck 1987). In its 
summary report, the SAP concluded that organic carbon should be removed to “…below 1 mg/L 

                                                      
10

 Excerpted from Drewes et al. 2008. 
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by reverse osmosis and essentially all identifiable trace organic compounds of significance 
should be absent in detectable concentrations.” 

The current draft criteria (CDPH 2008) couple an even more stringent TOC limit with the 
fraction of the drinking water supply that is derived from wastewater effluent as a factor in 
determining system performance requirements (quantified as TOC). This fraction is referred to 
as the “recycled water contribution” (RWC). The current draft regulations require that 
subsurface injection projects produce water with TOC of wastewater origin less than or equal to 
0.5 mg/L at the point where the recycled water (with or without dilution water) mixes with 
native groundwater. Subsurface injection projects are required to treat 100% of the recycled 
water by RO to provide sufficient removal of organics and must meet the TOC limit at the point 
of injection. If the RWC exceeds 50%, advanced oxidation processes (AOPs) using UV/AOP must 
be employed following RO treatment. For surface spreading operations, TOC must be equal to 
or less than 0.5 mg/L divided by the RWC at the point where the recycled water meets the 
groundwater. Therefore, surface spreading projects can receive credit for TOC removal that 
occurs within the vadose zone. 

In recognition of the possible shortcomings of using TOC as a surrogate for wastewater-
derived contaminants, CDPH also included additional monitoring requirements in the 2003 
draft criteria (CDPH 2003).  
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Appendix F - Recycled Water: Case Examples 

The following is a brief summary of the two key indirect potable reuse projects in California.  
Case Examples for landscape irrigation projects are also provided. As discussed in Section 3.4, 
the groundwater recharge case examples are provided to illustrate the extent of 
implememtation of the key recommendations from both the 1998 NRC report and the 
California’s 1996 surface water augmentation framework document.    The two irrigation 
examples are provided to illustrate that the DPH Title 22 regulations are sufficient and 
appropriate.   

 

Orange County Water District - Groundwater Replenishment via Direct Injection and Surface 
Water Augmentation (DDB Engineering 2008, Mills et.al. 1998) 

Orange County Water District (OCWD) is located in southern California where historic 
agriculture water use has been replaced with water demands from urbanization. OCWD was 
formed in 1933 by the California legislature to manage northern Orange County’s groundwater 
supply.  Currently, over 200 groundwater production wells exist within the OCWD service area 
and supply roughly 75% of the water demand. The remaining water supply demand is met 
through importing water from the Colorado River and northern California.   

OCWD operated the original Water Factory 21 (WF-21) from 1975 to 2004 and Interim 
Water Factory 21 (IWF-21) from 2004 to 2006. WF-21 was an advanced water treatment facility 
that recycled secondary-treated wastewater from Orange County Sanitation District’s (OCSD) in 
Fountain Valley, California. WF-21 produced up to 15 million gallons per day (mgd) of highly 
treated recycled water for injection into the Talbert Gap Seawater Intrusion Barrier (Talbert 
Barrier) to prevent the inflow of seawater into the Orange County Groundwater Basin. IWF-21 
was a transitional advanced water treatment facility during construction of a new full-scale 
groundwater replenishment system (GWR) that produced up to 5 mgd of high quality recycled 
water for injection at the barrier. Without the barrier, seawater can, if the groundwater basin 
level is low, migrate inland through the shallow, highly permeable, sandy, fresh water aquifers 
at the Talbert Gap near the Santa Ana River (SAR) and contaminate the deeper potable aquifers 
in the groundwater basin.  

The GWR System is a water supply project jointly sponsored by OCWD and OCSD to 
supplement existing water supplies by providing a new, reliable, high-quality source of water to 
recharge the Orange County Groundwater Basin and protect the Basin from further 
degradation due to seawater intrusion. The GWR System is located in central Orange County 
and extends from Fountain Valley and Huntington Beach near the coast to Santa Ana, Orange, 
and Anaheim, generally near the Santa Ana River.  

A pump station conveys recycled water via a pipeline to a series of 36 injection well sites 
that comprise the Talbert Barrier. Another pump station conveys recycled water via the 13-mile 
long GWR Pipeline to the Kraemer/Miller Spreading Basins in the Anaheim Forebay area. The 
GWR System is being implemented in phases, with the initial design capacity rated at 70 mgd 
(or roughly 72,000 acre-feet per year (afy), allowing for downtimes).  
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The barrier water demands are considered “first priority” and generally require an 
estimated annual average water demand of approximately 30 to 32 mgd.  The balance of the 
AWTF recycled water production that is not used at the barrier is pumped to the 
Kraemer/Miller Spreading Basins. Diluents (which are waters of non-wastewater origin) include 
captured Santa Ana River storm water and purchased imported water from the Metropolitan 
Water District of Southern California (MWD) that is recharged at the nearby OCWD spreading 
basins. 

The State permit allows 75 percent of the water injected at the Talbert Barrier to be 
recycled water based on a monthly running average over the past 60 months. This requirement 
allows for flexibility to inject only recycled water at times when the MWD potable water supply 
may be unavailable. The permit also includes provisions for a phased approach to injection of 
100 percent recycled water at the barrier, or a maximum RWC limit of 100 percent on a 
monthly running average basis over the preceding 60 months. Following a demonstration 
period, OCWD anticipates injecting only recycled water at the Talbert Barrier.  

Besides water supply, another purpose of the GWR System is to provide peak flow relief for 
OCSD during peak wet weather flow conditions. During peak wastewater flow events, the AWTF 
will provide peak flow discharge relief for the OCSD ocean outfall by discharging up to 100 mgd 
of microfiltered, disinfected recycled water to the Santa Anna River.  

 

Best Available Technology and Multiple Barriers: Secondary-treated wastewater that is 
normally be discharged to the ocean is diverted from OCSD Plant to the GWR System AWTF, 
where it is treated to drinking water standards using microfiltration (MF), reverse osmosis (RO), 
advanced oxidation/disinfection (ultraviolet (UV) irradiation and hydrogen peroxide, also called 
AOP) processes, decarbonation, and lime stabilization post-treatment.  

 

Plant Monitoring and Performance Evaluation/Control:  The GWR System includes plans to 
conduct performance monitoring at multiple points or steps as the water is treated and 
recharged, and thus, allow for action if certain performance requirements are not met.  Critical 
control point monitoring includes: continuous on-line instrument monitoring, feedback to allow 
for control evaluation, corrective action for failure, and records management. 

 

Recycled water produced by the AWTF must comply with drinking water standards and other 
water recycling and discharge requirements established by CDPH and the RWQCB. On March 
12, 2004, the RWQCB issued Order No. R8-2004-0002 entitled “Producer/User Water Recycling 
Requirements for the Orange County Water District Interim Water Factory 21 and Groundwater 
Replenishment System, Groundwater Recharge and Reuse at Talbert Gap Seawater Intrusion 
Barrier and Kraemer/Miller Recharge Basins”. (RWQCB, 2004) 

 

OCSD Peak Wet Weather Flow Relief:  The GWR System will provide peak wet weather flow 
relief for the OCSD ocean outfall. It is anticipated that peak storm events occur about once 
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every three years, and create high wastewater flows that could exceed the capacity of the 
OCSD ocean outfall. During these storm events, the GWR System will provide up to 100 mgd of 
peak wet weather flow relief for OCSD treating peak secondary effluent flows using MF and UV 
disinfection (bypassing RO) for discharge to the SAR.  

 

Source Control: The Orange County Sanitation District has expanded their source control 
program as an integral part of the multi-barrier system that protects the quality of the product 
water of the Groundwater Replenishment System (GWRS). 

The scope and purpose of the expanded source control program was defined by the 
California Department of Public Health, Santa Ana Regional Water Quality Control Board, GWRS 
Expert Panel, and GWRS Public/NGO Panel and appears in the California Department of Public 
Health: California Code of Regulations Title 22 - Draft Groundwater Recharge Reuse, Section 
60320 General Requirements, and Santa Ana Regional Water Quality Control Board: Regional 
Order No. R8-2008-0058 - Producer/User Water Recycling Requirements. 

Under the Title 22 Draft regulations, recycled municipal wastewater used for a 
Groundwater Recharge Reuse Project shall be from a wastewater management agency that: 

(1) administers an industrial pretreatment and pollutant source control program; 

(2) implements and maintains a source control program that includes at a minimum: 

(A) an assessment of the fate of Department-specified contaminants through the 
wastewater and recycled municipal wastewater treatment systems, 

(B) contaminant source investigations and contaminant monitoring that focus on 
Department-specified contaminants, 

(C) an outreach program to industrial, commercial, and residential communities 
within the sewage collection agency’s service area for the purpose of managing 
and minimizing the discharge of contaminants of concern at the source, and 

(D) an up-to-date inventory of contaminants discharged into the wastewater 
collection system so that new contaminants of concern can be readily evaluated. 

(3) is compliant with the effluent limits established in the RWQCB permit for the 
Groundwater Recharge Reuse Project. 

Regional Order No. R8-2008-0058 states that the scope and purpose of this OCSD source 
control program need to be expanded to include not only contaminants that may be 
detrimental to the facilities or environment, but also to include contaminants specified by CDHS 
that may be harmful to human health and drinking water supplies. In addition to OCSD’s 
Federal Pretreatment Program, key elements of the expanded source control program include: 

• Pollutant Prioritization. OCSD’s CEC monitoring began in March 2007 with an initial 
list of 500 constituents developed by stakeholders including regulators, NGO’s, and 
staff. Monitoring included the source water, unit processes, and product water in three 
phases over a two-year period. The prioritization program reduced the list of 500 
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constituents to a short list of 22 based on 1) concentration and mass, 2) toxicity, 
numerical limits or standards, 3) treatment removal effectiveness using an on 
probabilistic parametric model, and 4) action levels or triggers. Continual monitoring for 
existing and new CEC’s is done periodically for program effectiveness. 

• Pharmaceutical Program. Source Control permits industrial pharmaceutical 
manufacturers through the Federal Pretreatment Program. Pharmaceutical 
manufacturers’ wastewater disposal practices are being re-evaluated to coincide with 
the overall pharmaceutical strategy. To address commercial facilities, Source Control is 
currently developing a Health Service Facilities (HSF) program. A study of several HSF 
commercial sectors is currently being performed. The practices and impacts of 
pharmaceutical disposal by HSFs will be determined so that a comprehensive program 
can be administered which will complement the residential and industrial programs. 

• Commercial Sector Program. Using the pollutant prioritization results, Source Control 
is tracing the sources of the prioritized CEO’s based on mass emission level (versus 
concentration). In this manner, significant dischargers are located from functional use of 
CEC ingredients in consumer products. Since there are over 20,000 commercial 
businesses in the Orange County service area, the significant dischargers are prioritized 
using a sector impact analysis. The level of regulation will be established in a tiered 
implementation program. If an action level or trigger is reached, the tier of regulation is 
increased until reduction goals are satisfied. Initial commercial sectors include: cleaners 
and degreasers, coatings, coloring agents and dyes, pesticides, disinfection byproducts, 
fuels additives and byproducts. Domestic and trunkline sampling are essential to 
characterizing the sources of the CEC’s. 

• Countywide Pollution Prevention Partnership Program C4P. C4P is OCSD’s new 
Countywide Pollution Prevention Partnership Program. This partnership was solidified 
on March 28, 2008 when OCSD’s Board of Directors adopted Resolution 08-02 that 
supports an Enhanced Source Control Program to reduce emerging pollutants of 
concern. Source control of emerging pollutants of concern from nonindustrial sources 
will be accomplished primarily through countywide public education, targeting 
residential and commercial entities within OCSD’s service area. Many people are not 
well informed about the water quality impacts that can result from certain everyday 
behavioral practices, such as flushing unused medicines down the toilet, pouring volatile 
chemicals down the sink, or by applying excessive amounts of fertilizers to their lawns 
and gardens. OCSD’s close involvement and support with individual citizens and 
businesses are absolutely essential in controlling pollutants of concern, since 
nonindustrial water pollution commonly originates from their combined activities of 
improperly disposing harmful pollutants into the sewer system. Unlike source control of 
industrial facilities where permits are issued to regulate dischargers, implementation of 
a source control program for domestic and commercial sources may be implemented 
through a voluntary pollution prevention outreach program designed to change 
improper waste disposal practices. OCSD has partnered with its 25 member agencies to 
disseminate outreach materials provided by OCSD using their existing media outlets. 
Focused outreach materials will support various Nonindustrial Source Control Programs 
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including Pharmaceutical, Emerging Pollutants of Concern (support GWR System), Fats, 
Oils, and Grease; and Urban Runoff/Nonpoint Source Pollution. 

• Chemical Inventory and Chemical Fact Sheets. Chemical inventories used by 
businesses within the OCSD services area are being tracked leveraging off existing 
databases of other agencies such as Fire Departments and the Toxic Release Inventory 
by Source Control. The inventories are geo-positioned to facilitation source 
identification searches and fast response. Chemical fact sheets of CEC also facilitation 
fast response or coordination with other agencies. 

(Source: Attachment-I Orange County Sanitation District Source Control Program (OCSD letter 
from Ed Torres, May 14, 2010) 

 

Staffing and Quality Assurance: OCWD plans call for the plan to be continuously manned, 24 
hours per day, 7 days per week. In addition to the Chief Operator, there are approximately 16 
plant operators who each work 12-hour shifts, daytime and nighttime. There are approximately 
11 I&E Technicians and 17 Maintenance Technicians who also work alternating shifts. OCWD 
has an on-site state-certified laboratory that operates in accordance with the Orange County 
Water District, Laboratory Quality Assurance Manual (OCWD, 2004). 

 

Contingency Plans: The GWR System contingency plans call for operation on the condition that 
it causes no impairment to the groundwater basin. In the event of emergencies, the GWR 
System can be shutdown, stopping production of recycled water. The Talbert Barrier can be 
partially maintained using potable MWD water only, if necessary. Recharge via spreading at the 
Anaheim Forebay can be sustained, if necessary, using only imported water and/or captured 
stormwater. In addition, the OCWD plant has a dual feed power supply makes the likelihood of 
electrical power outages extremely rare.  

 

Coordination: OCWD and the OCSD recognize the importance of interrelationship between the 
GWR System and the OCSD wastewater treatment plant and have a formal agreement (OCWD 
and OCSD, 2002) memorializing the understanding between the two agencies under which the 
GWR System is operated and maintained. The GWR System Steering Committee, which is 
comprised on Directors from both the OCWD and OCSD Boards of Directors, meets regularly to 
review matters and make recommendations to the full Boards on issues pertaining to the GWR 
System. The Joint Operations Committee, which consists of OCWD and OCSD staff, meets on a 
regular basis to communicate operations and maintenance plans, implement joint policies and 
procedures, cross-train operations staff, and address issues that arise to optimize both the 
GWR System and OCSD treatment plant.  
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Montebello Forebay Groundwater Recharge Project (Hartling and Nellor 1998) 

Since 1962, recycled water provided by the County Sanitation Districts of Los Angeles County 
(LACSD) has been used to replenish the Central Groundwater Basin as part of the Montebello 
Forebay Groundwater Recharge Project. Other sources of replenishment water are imported 
river water (Colorado River Water and State Project Water) supplied by the Metropolitan Water 
District of Southern California (MWD) and storm water. The waters used for recharge meet 
primary drinking water standards. Replenishment water is applied at two spreading grounds 
owned and operated by the Los Angeles County Department of Public Works (LACDPW): the Rio 
Hondo Coastal Spreading Grounds and the San Gabriel Coastal Spreading Grounds (Figure F.1). 
In addition, the San Gabriel River channel itself is unlined (soft natural bottom) and is also used 
for recharge. Each spreading ground is subdivided into an organized system of smaller ponds 
that can be filled or dried alternatively to allow maintenance in some while others are being 
used. The spreading basins are operated under a wetting/drying cycle designed to optimize 
inflow and discourage the development of vectors.   
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Figure F.1 Groundwater Recharge Locations 

 

 
The Central Groundwater Basin is adjudicated and has been governed as part of a 

controlled replenishment and water withdrawal framework for over 50 years to prevent salt 
water from the ocean from contaminating local supplies due to overdraft of the aquifer and to 
ensure a high quality and reliable source of groundwater11. The Montebello Forebay Project is 
the oldest and best characterized groundwater recharge project in California. The project is the 

                                                      

11 Research has been conducted on the ability of soil to treat recycled water as it percolates to groundwater via the soil aquifer 

treatment (SAT) process.  The investigation found that SAT is an effective and sustainable process to remove organic 
compounds such as pharmaceuticals, personal care products, and endocrine disrupting compounds (Fox et al., 2001; Fox et al, 
2006). 
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joint responsibility of the Water Replenishment District of Southern California (WRD), LACSD, 
and LACDPW.  

Over several State permit cycles allowable recharge has been increased to allow up to 
60,000 AFY of recycled water to be used for recharge and up to 50 percent recycled water in 
any one year as long as the running 3-year total did not exceed 150,000 AFY or 35 percent 
recycled water. The recycled water percentage was based on the combined total inflow to both 
spreading grounds where total inflow included all waters spread, rainfall, and the underflow 
from the Main San Gabriel Groundwater Basin. Typically, the amount of recycled water has 
averaged 40,000 AFY. 

The State permit was recently amended (April 2009) to make a change in the averaging 
period for the calculation of the recycled water allowance to ensure that an adequate and 
reliable source of groundwater was available due to the lack of MWD imported water that 
could be used for replenishment. The 2009 permit amendment allows an increase in the 
amount of recycled water by removing the running 3-year allowable annual quantity limit and 
annual volume caps of recycled water. It allows the maximum quantity of recycled water spread 
to be 35 percent based on the combined total inflow to both spreading grounds during a period 
of five years instead of three years and thus will allow for additional recycled water to be 
spread to account for wet years and to provide more flexibility in operations.  

In addition, local water agencies are looking at a possible project in the Central Groundwater 
Basin including expanding the role of storm water and recycled water. One option would be to 
provide an advanced level of treatment to the tertiary effluent from the San Jose Creek WRP for 
groundwater replenishment.  

 

Best Available Technology and Multiple Barriers:  The recycled water provided by LACSD comes 
from three water reclamation plants (WRPs): the Pomona WRP, Whittier Narrows WRP, and 
San Jose Creek WRP. The treatment system for these facilities, as shown in Figure F.2, consists 
of primary treatment, nitrification/denitrification nitrification activated sludge biological 
treatment, granular media filtration, disinfection using sequential chlorination, and 
dechlorination. The change to from chloramination to sequential chlorination has occurred over 
the past few years in response to the goal of minimizing disinfection byproduct formation. 
Sequential chlorination involves the application of chlorine to fully nitrified secondary effluent 
upstream of the granular media filters (to form free available chlorine), and subsequent 
addition of chloramines (ammonia followed by chlorine) downstream of the filters.  
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Figure F.2 Schematic of LACSD WRP Treatment System 

 

Plant Monitoring and Performance Evaluation/Control:  The WRPs ensure plant performance 
reliability through various in-plant control parameters, redundancy capabilities, and emergency 
operation plans. In-plant control parameters include the following: 

 

▪ Mixed liquor DO – indicates possible high load or high industrial waste which 
impacts secondary quality 

▪ Secondary turbidity – reflects secondary treatment and loading on the filters 

▪ Filter effluent turbidity – early warning for final turbidity, provides time to react 
(notify reusers to shutdown)  

▪ Final effluent turbidity – indicates when to turn reusers back on   

▪ Pre-chlorine residual analyzer – ensure free chlorine residual before filtration (1 
mg/L) 

▪ Post-chlorine residual analyzer – ensure disinfection of effluent (4-6 mg/L) 

▪ Out-chlorine residual analyzer – ensure adequate disinfection (2.5 mg/L) 

▪ Final chlorine residual analyzer – verify adequate de-chlorination (<0.1 mg/L) 

▪ Secondary effluent ammonia analyzer – indicates ammonia bleed through 

▪ Filter structure overflow indication – warning on impending effluent filter bypass 
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Department of Public Health Reliability Requirements are addressed by the WRPs through 
having enough tankage to operate in an emergency with one unit out of service if flows are 
normal. The WRPs have adequate storage and standby feeders for coagulation with auto 
controls, the filtration system has alarms for high head loss and high filter effluent turbidity, 
and the disinfection system has standby storage tanks, automatic residual controls, recorders, 
alarms, and multipoints for addition. Although the WRPs have no long or short-term storage, 
they do have the ability to bypass flow. 

The recharge project is subject to a complex water quality monitoring and compliance 
program that assesses all of the waters used for replenishment and in the groundwater system. 
Effluent samples from the WRPs are collected monthly, bimonthly, and quarterly. Recycled 
water produced by the WRPs complies with the primary drinking water standards, and meets 
total coliform and turbidity limits of 2.2/100 mL and 2 NTU, respectively. Additionally, extensive 
virus and parasite sampling indicates that the recycled water is essentially free of measurable 
levels of pathogens.  

Six spreading ground monitoring wells are specified for bimonthly sampling under the 
project’s monitoring program. In addition, nineteen production wells in the vicinity of the 
Montebello Forebay are specified for semiannual sampling and the headworks at both of the 
Rio Hondo and San Gabriel spreading facilities are sampled on a quarterly basis (Figure F.3).  
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Figure F.3 Montebello Forebay Sampling Locations 

 

 

Source Control:  The three WRPs that provide recycled water for the recharge project are part 
of LACSD’s Joint Outfall System, which is an integrated network of the Joint Water Pollution 
Control Plant (JWPCP), six WRPs, and collection systems. LACSD, primarily through its source 
control program, takes steps to prevent contaminants that might adversely impact the quality 
of the recycled water being produced from entering the sewer system.  Industrial facilities with 
discharges to WRPs that are not compatible with the Districts' reuse goals may be given 
stringent limits or even required to reroute their flows around the WRPs for treatment at 
JWPCP and ocean disposal.  The WRPs treat mainly residential and commercial waste, with 
generally less than 10% of the influent coming from industrial sources. 

The industrial source control program was established to ensure that all of LACSD’s 
treatment facilities are able to comply with waste discharge requirements; to protect the public 
and the environment; and to protect personnel and facilities from potentially harmful industrial 
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wastes.  To achieve these objectives, a system-wide pretreatment program was created in 
1972, beginning with the adoption of the Wastewater Ordinance.  This document establishes 
the legal authority to enforce LACSD’s local requirements as well as all appropriate state and 
federal regulations. LACSD’s source control program presently regulates an extensive and 
varied industrial base consisting of over 2,600 industrial users (IUs).   

 

The key elements of the source control program include: 

 Permitting. Industrial wastewater discharge permits are issued jointly with the city in which 
the industry is located or the LACDPW for a period of five years. 

 Industrial Wastewater Monitoring. The industrial wastewater monitoring program provides 
data for the evaluation of regulatory compliance (federal, state and local); wastewater 
treatment plant loadings and operation; and the discharge of illegal or incompatible wastes.  
Industrial wastewater dischargers are monitored through three separate mechanisms: 1) 
industrial user self-monitoring; 2) LACSD monitoring via onsite composite or grab sampling; 
and 3) surveillance sampling.  

 Inspection. LACSD has developed an active industrial waste inspection program that 
includes frequent inspections and coordination with emergency response and other 
regulatory agencies.  

 Enforcement. LACSD has established a tiered enforcement program to respond to 
pretreatment violations. Industries are required to address each violation and implement 
corrective actions. Follow-up inspection and/or sampling is conducted to confirm that the 
corrective actions taken were successful in achieving compliance.  Each subsequent 
violation leads to escalation of enforcement action, including legal action if necessary.   

 Pollution Prevention. LACSD participates in the statewide No Drugs Down the Drain 
program, which is a public outreach program to alert California residents living in specific 
regions about the problems associated with flushing unused, unwanted, and expired 
medications down the toilet or drain and to provide them with other, safe and proper 
disposal choices. In addition, the LACSD is involved with a number of local and statewide 
pollution prevention initiatives including working with the local air regulatory agency to 
ensure that mandated, widespread conversion to aqueous cleaners does not result in 
additional pollutant discharges. 

 

Staffing and Quality Assurance:  

Contingency Plans: In case of plant failure or disruption, the Pomona and Whittier Narrows 
WRPs can be completely bypassed in certain cases. Additionally the secondary effluent from 
the Pomona and Whittier Narrows WRPs can be diverted back to the sewer if needed. The San 
Jose Creek West WRP can divert the secondary effluent back to the sewer and the San Jose 
Creek East WRP can divert the final effluent back to the sewer. Flow can also be sent 
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interchangeably to or from both the San Jose Creek WRPs. The ability to divert or bypass flow 
depends on time of day and sewer conditions down stream of the WRPs. 

Except at the San Jose Creek WRPs, the WRPs have enough standby emergency power to 
operate all plant process equipment. The San Jose Creek WRPs have enough power to operate 
all plant equipment except the process air compressors. The San Jose Creek WRP can pump and 
disinfect the water but not biologically treat it. 

 

Coordination: The project is permitted by the Los Angeles Regional Water Quality Control Board 
(RWQCB) under Water Reclamation Requirements (WRRs) (Order No. 91-100), which were 
amended in April 2009 via Order No. R4-2009-048. The permit was jointly issued to LACSD, 
WRD, and LACDPW.  
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Case Examples - Summary of Non-potable reuse (Restricted and Unrestricted Irrigation) 
Projects in California (excerpted from Olivieri and Seto 2007) 

Case study 1: City of Sunnyvale, CA 

The City of Sunnyvale Water Pollution Control Plant (WPCP) is located in Sunnyvale, 
California. The plant provides advanced secondary treatment of wastewater from domestic, 
commercial and industrial sources within the City of Sunnyvale, Rancho Rinconada and Moffett 
Field. The service area has a population of approximately 127,000. The plant has an average dry 
weather flow design capacity of 29.5 MGal/d and a peak flow capacity of 40 MGal/d. 
Disinfected tertiary recycled water is produced intermittently to meet user demand and to fill a 
2 million gallon storage tank, which then serves as a supply source. The recycled water is 
distributed throughout the northern portion of the City of Sunnyvale, where it is used mainly 
for irrigation purposes. 

The wastewater treatment process consists of influent grinding, pre-aeration/grit removal, 
primary sedimentation, secondary biological treatment (oxidation ponds), fixed-film reactor 
nitrification, dissolved air flotation with coagulation, dual media filtration, chlorination and 
dechlorination.  During periods of recycled water production, plant operating conditions are 
adjusted to meet California’s Water Recycling Criteria for disinfected tertiary recycled water 
(average turbidity less than 2 NTU prior to chlorination, chlorine contact (CT) of > 450 mg-min/L 
(as estimated by residual chlorine concentration (mg/L) times contact time (min) ) with 90 
minutes minimum modal chlorine contact time, and median total coliform <2.2 MPN.  These 
conditions are achieved through changes in dissolved air flotation polymer dose, chlorine dose, 
and flow rates through the contact basins used for recycled water.  Filtered water turbidity, 
final chlorine residual, and CT are monitored continuously by the control system.  If turbidity or 
CT exceed the regulatory limits, the control system will automatically divert water from the 
recycled water pump station to the NPDES “normal” discharge.  CT values are normally much 
higher than the minimum requirement.  

The recycled water flow from the contact tanks to the recycled water pump station is 
partially dechlorinated with sodium bisulfite to maintain a chlorine residual of approximately 2-
3 mg/L.  The calculated CT does not include any additional contribution from the chlorine 
residual in the distribution system. 

During the peak recycled water production season (April-October) the plant effluent is 
highly nitrified. Between May and July, ammonia levels prior to chlorination are typically below 
0.5 mg/L, indicating that chlorine is mostly likely initially present in the free residual form 
during this period.  During the late summer, fall, and winter, some or all of the chlorine is likely 
present in the form of a combined residual. 

In 2005, 265 million gallons of recycled water was distributed to customers throughout the 
northern portion of the City of Sunnyvale.  In 2004 the total recycled water distributed was 306 
million gallons. A summary of recycled water usage by reuse application category for 2005 is 
provided in Table F.1. Review of the table clearly indicates that landscape and park irrigation 
accounts for the vast majority of recycled water use. 

 
Available Data:  Data for flow, filtered water turbidity, chlorine residual, and CT are recorded 
continuously by the plant’s Supervisory Control and Data Acquisition (SCADA) system.  Grab 
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samples collected during each recycled water production run are analyzed for total coliform 
and dissolved oxygen as required by the City’s permit (Water Reuse Order).  During the summer 
of 2006, 19 samples were also analyzed for enterococcus.  Those results varied from <1to 
3/100mL (MPN).  Additional water quality monitoring is conducted to track long-term trends 
and to provide information to interested recycled water customers.  The parameters analyzed 
include chloride, bicarbonate, sulfate, nitrate, phosphate, calcium, magnesium, sodium, TDS, 
conductivity, hardness, alkalinity, salinity, boron, ammonia and pH. 

Table F.1 Summary of 2005 Recycled Water Usage for City of Sunnyvale Water Pollution Control Plant 

 

Reuse Application4 

No. of 
Sites 

Area Applied 

(acres) 

Volume 
Delivered8 

(MG) 

% of Total 
Reuse Flow 

Landscape Irrigation     

 Parks5 3 65 36.8 13.9 

 Golf Courses 1 100 78.8 29.8 

 Green Belts7 12 10 5.8 2.2 

 Other6 68 150 134.6 50.8 

Industrial1 2 - 8.4 3.2 

Dual Plumbing3 1 - 0.30 0.11 

TOTAL 88 325 265 100 

Notes: 

1. Industrial processes receiving recycled water include cooling, construction 
applications, soil compaction and dust control, etc.  (Note: RW is supplied to one 
cooling tower site as a backup supply, but no water is actually used).  

2. Environmental Enhancement includes wildlife habitat, wetland/marsh 
applications, etc. 

3. As defined in Title 22 

4. Two sites are listed under two categories because of multiple uses 

5. Parks category includes County park, large sports complex, and baseball fields. 

6. Primarily comprised of landscaping at commercial/industrial office buildings. 
Some use in fountains. 

7. Consists of freeway interchange and street median sites. 

8. Based on totals recorded at each site’s meter (water billing records) reduced by 
16 percent to account for average system-wide potable water fraction. 
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Recycled Water Use Management Concerns:  In the early days of the program, concerns 
regarding the safety of recycled water used in golf course water features were raised by golf 
course maintenance staff.  Similar concerns are typically raised when use of recycled water at 
parks and playgrounds is proposed.  Parks Department staff has also raised concerns about 
potential exposure to recycled water that may be on picnic tables as a result of irrigation 
overspray or drift. 

Interpretation of Risk Matrix with Case Study Context:  The City of Sunnyvale produces a 
disinfected tertiary recycled water that is consistent with and meets California’s water reuse 
regulations.  Data provided by the City indicate that the most common end use of the recycled 
water is for landscape irrigation and reported concerns regarding the safety of recycled water 
are also related to that use.   

Based on the results of the MRA simulations it could be expected that the median risk of 
infection from human enteric viruses, Cryptosporidium, or Giardia would each be on the order 
of 10-5 per exposure with 90-percent confidence intervals ranging from 10-6 to 10-3 per 
exposure, provided that the WPCP is operating in a manner consistent with planned operations.   

Case study 2: City of San Jose, CA 

The San Jose/Santa Clara (SJ/SC) WPCP is located in San Jose, CA. The plant provides tertiary 
treatment of wastewater from domestic, commercial and industrial sources from the cities of 
San Jose, Santa Clara, and Milpitas; County Sanitary Districts 2 and 3; the West Valley Sanitation 
District including Campbell, Los Gatos, Monte Sereno and Saratoga, and the Cupertino, Burbank 
and Sunol Sanitary Districts.  The service area has a population of approximately 1,300,000. 

The wastewater treatment process consists of screening and grit removal, primary 
sedimentation, secondary (biological nutrient removal) treatment, secondary clarification, 
filtration, disinfection with chlorine and dechlorination. The WPCP has an average dry weather 
flow design capacity of 167 Mgal/d and a peak hourly flow capacity of 271 Mgal/d. The 
secondary treatment process is a biological nutrient removal process that consists of anoxic, 
aerobic, anoxic and aerobic zones in sequence.  The mean cell residence time in summer is 6-10 
days and in winter is 8-12 days.  The multi-media gravity filters with 22 inches of anthracite, 12 
inches of sand and 12 inches of gravel are divided into filters which produce plant effluent 
discharged to the receiving water (at hydraulic loading rates between 5.3 and 7.2 gpm/ft2) and 
filters which produce recycled water (at hydraulic loading rates between 4.3 and 4.8 gpm/ft2).  
Chlorine is used for intermittent prefilter chlorination.  The filters are backwashed every 24 to 
25 hours on average using 0.28 Mgal of filtered plant effluent per backwash. Aluminum sulfate 
is used for backwash water treatment. 

Recycled water from the plant is delivered to customers in the service area by the South Bay 
Water Recycling Program (SBWR). Treated water from the SJ/SC WPCP plant is redirected from 
the South San Francisco Bay discharge to an effluent diversion structure and pipe, where it 
receives an additional chlorine dose to achieve a CT of 450 mg-min/L (5 mg/L after 90 minutes 
contact time), and then flows into the recycled water distribution system via a transmission 
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pump station (TPS). The recycled water production quality is monitored continuously via an on-
line system for turbidity and chlorine residual. 

In 2005 the total recycled water production was over 2.6 billion gallons and the WPCP 
discharged 100 Mgal/d to the receiving water.  The average peak summer months recycled 
water production is 12 Mgal/d and the annual average monthly supply is 8-10 Mgal/d. A 
summary of recycled water usage by reuse application category for 2005 is provided in Table 
F.2. There are currently 541 customers served through SBWR’s four retailers, San Jose 
Municipal Water System, San Jose Water Company in the City of San Jose, City of Milpitas and 
the City of Santa Clara. 

Available Data:  Daily data from 2005 are available for flow, total coliform, dissolved oxygen, 
pH, chlorine residual, plant effluent enterococcus, filter effluent turbidity, and total CT.  Median 
total coliform sample results were 1.0 MPN/100mL for 2005. The chlorine residual ranged from 
3.5 to 9.0 mg/L with an average value of 5.8 mg/L and a standard deviation of 0.95 mg/L.  The 
total CT ranged from 938 to 7,607 mg-min/L with an average value of 2,472 mg-min/L and a 
standard deviation of 1,233 mg-min/L. The filter effluent turbidity ranged from 0.02 to 2.2 NTU 
with an average value of 0.6 NTU and a standard deviation of 0.25 NTU 

Table F.2 Summary of 2005 Recycled Water Usage for South Bay Water Recycling 

Reuse Application 

 

No. of 
Sites4 

Volume 

Delivered5 

(MG) 

% of Total 
Reuse Flow 

Landscape Irrigation1 501 1687 67 

Agriculture 3 0.9 0 

Industrial2 8 823.5 33 

Dual Plumbing3 5 3.7 0 

TOTAL 517 2515.1 100 

Notes: 

1. Landscape irrigation includes parks, golf courses, green belts and schools. 

2. Industrial processes receiving recycled water include cooling, construction applications, soil 
compaction and dust control, etc.  

3. Commercial buildings. 

4. Customers that used recycled water for beneficial use during 2005. 

5. Amount distributed represents the amount of recycled water used by customers 
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Recycled Water Use Management Concerns:  Concerned citizens have occasionally contacted 
the SBWR Program regarding public contact with recycled water from irrigation sprinklers, wet 
grass in parks and/or golf courses, condenser drift from cooling towers, overspray from 
decorative fountains, and by other incidental means of public contact.  In most cases, they have 
been satisfied to learn that recycled water provided by the SBWR program meets the full body 
contact requirements contained in the California Water Recycling Criteria (State of California 
2000). 

Interpretation of Risk Matrix within Case Study Context:  The City of San Jose produces a 
disinfected tertiary recycled water that is consistent with California’s water reuse regulations.  
Data provided by the City indicate that the most common end use of the recycled is for 
landscape irrigation and reported concerns from concerned citizens regarding the safety of 
recycled water are most often related to that use.   

Based on the results of the MRA simulations it could be expected that the median risk of 
infection from human enteric viruses, Cryptosporidium spp., or Giardia spp. would each be on 
the order of 10-5 per exposure with 90% confidence intervals ranging from 10-6 to 10-3 per 
exposure, provided that the WPCP is operating in a manner consistent with planned operations.   
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Appendix G - Concept of Reliability 

Failure of municipal wastewater treatment plant processes used to reclaim wastewater for 
potable reuse could result in exposure of the user population to considerable disease risk. It is 
therefore desirable to minimize the probability of failure at such a reclamation facility, or, in 
other words, to increase reliability. Quantification of reliability is an important element in 
assessing the potential health risks of water reuse. 

The definition of treatment plant processes could be broadened to include those of an 
entire water reuse scheme plan (i.e., municipal wastewater plant, the holding reservoir, the 
groundwater basin, and the potable water treatment plant). These additional treatment 
operations/processes within an entire reuse plan would add redundancy and a degree of fail 
safety to the reuse plan. However, the focus of the discussion within this report is on the 
treatment plant processes affecting the advanced wastewater treatment plant effluent. 

Treatment plant reliability is defined as the probability that a system can operate 
consistently over extended periods of time. In the case of a water reclamation plant, which 
produces an effluent for potable reuse, reliability might be defined as the likelihood of the plant 
achieving an effluent that matches, or is superior to predetermined standards. Where 
predetermined standards are not available, reliability might be defined as the likelihood of 
achieving a consistent effluent. The above definitions only encompass the variability associated 
with effluent quality related to by in-plant treatment processes and assume that the plant is 
properly designed, operated and maintained. 

The above definition also includes the determination of the probability that the plant will be 
non-functional at any given time. Expansion of the definition of reliability to include this factor 
requires an evaluation of plant operational reliability, separate from effluent quality variability, 
that is caused by mechanical, design, process, or operational failures. 

Reliability analysis itself can not only be used to quantify the reliability of a plant but also to 
find ways of increasing the reliability by revealing weak points in the process so that (often 
simple) corrections and/or modifications can be made. Even a well maintained, well operated 
plant is not perfectly reliable. Some variation will necessarily be inherent in the system. 
Variations in influent flow and quality which differ markedly from design values, as well as 
many inexplicable factors, create variation in effluent characteristics. In addition to variation 
inherent in the treatment system itself, other factors contribute to the plant unreliability. These 
factors include power outages, equipment failure, and operational (human) error, all of which 
must be incorporated into the reliability analysis. 

 

Source: (Olivieri, Eisenberg et al. 1987) 
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Appendix H - Current Pretreatment Regulatory Authority for Source Control 

“A component of the National Pollutant Discharge Elimination System (NPDES) Program, the 
National Pretreatment Program was developed by USEPA to control the discharge of pollutants 
from POTWs [publically owned treatment works]. The statutory authority for the National 
Pretreatment Program lies in the Federal Water Pollution Control Act of 1972, which was 
amended by Congress in 1977 and renamed the Clean Water Act (CWA). Under Section 307(b), 
[US]EPA must develop Pretreatment Standards that prevent the discharge of pollutants that 
pass through, interfere with, or are otherwise incompatible with POTWs. The 1977 
amendments to the CWA required POTWs to ensure compliance with the pretreatment 
standards by each significant local source introducing pollutants subject to pretreatment 
standards into a POTW. To meet the requirements of the 1977 amendments, [US]EPA 
developed the General Pretreatment Regulations for Existing and New Sources of Pollution [40 
Code of Federal Regulations(CFR) Part 403+.” (Local Limits Development Guidance, EPA 833-R-
04-002A, Office of Wastewater Management 4203, July 2004, page 1-1) 

“Section 13240 of the Porter-Cologne Water Quality Control Act requires each Regional 
Board to formulate and adopt water quality control plans, or basin plans, for all areas within the 
Region. The Porter-Cologne Act also requires each Regional Board to establish water quality 
objectives to ensure the reasonable protection of beneficial uses and a program of 
implementation for achieving water quality objectives within the basin plans. Title 40, Code of 
Federal Regulations, Part 131 requires each State to adopt water quality standards by 
designating water uses to be protected and adopting water quality criteria that protect the 
designated uses. In California, the beneficial uses and water quality objectives are the State’s 
water quality standards.” (Central Valley Regional  Water Board Executive Officer’s Report 5 
August 2005, Program Reports, Basin Planning Program, 
http://www.waterboards.ca.gov/centralvalley/water_issues/ 
basin_plans/planning_overview.pdf, November 16, 2009) 

“To protect its operations and to ensure that its discharges comply with State and Federal 
requirements, a POTW will design its local limits based on site-specific conditions. Among the 
factors a POTW should consider in developing local limits are the following: the POTW’s 
efficiency in treating wastes; its history of compliance with its NPDES permit limits; the 
condition of the water body that receives its treated effluent; any water quality standards that 
are applicable to the water body receiving its effluent; the POTW’s retention, use, and disposal 
of sewage sludge; and worker health and safety concerns. The General Pretreatment 
Regulations require the following:  

 POTWs that are developing pretreatment programs must develop and enforce 
specific limits on prohibited discharges, or demonstrate that the limits are not 
necessary [40 CFR 403.8(f)(4)].  

 POTWs that have approved pretreatment programs must continue to develop 
and revise local limits as necessary [40 CFR 403.5(c)(1)].  

http://www.waterboards.ca.gov/centralvalley/water_issues/%20basin_plans/
http://www.waterboards.ca.gov/centralvalley/water_issues/%20basin_plans/
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 POTWs that do not have approved pretreatment programs must develop specific 
local limits if pollutants from non-domestic sources result in interference or pass 
through and such occurrence is likely to recur [40 CFR 403.5(c)(2)].  

 

[US]EPA and the States have approved more than 1,400 POTW pretreatment programs. 
Each program must develop, implement, and enforce technically based local limits. Because 
most of the POTWs that require pretreatment programs now have them, only a few new 
programs are approved each year. Work on local limits continues, however, because POTWs 
with approved programs must periodically review these local limits. [US]EPA regulations require 
that POTWs with approved programs must “provide a written technical evaluation of the need 
to revise local limits under 40 CFR 403.5(c)(1), following permit issuance or reissuance” * 40 CFR 
122.44(j)(2)(ii)]. Additionally, [US]EPA recommends that Control Authorities review the 
adequacy of local limits if current wastewater treatment plant performance fails or will fail to 
attain applicable NPDES, State, or local permit requirements or other operational objectives, 
including water quality objectives of receiving waters; and if the performance shortcomings 
may be reasonably attributed to pass through or interference caused by a POC [pollutant of 
concern]. Finally, Control Authorities may find it beneficial to re-evaluate their local limits when 
a change in POTW operations results in a significant change in operational objectives; when the 
POTW experiences a significantly different influent flow or pollutant characteristics; or when a 
significant alteration of key environmental criteria occurs.  . . . 

The National Pretreatment Program consists of three types of national pretreatment 
standards established by regulation that apply to industrial users (IUs). These include prohibited 
discharges, categorical standards, and local limits. Prohibited discharges, comprised of general 
and specific prohibitions, apply to all IUs regardless of the size or type of operation. Categorical 
standards apply to specific process wastewater discharges from particular industrial categories. 
Local limits are site-specific limits developed by the POTW to enforce general and specific 
prohibitions on IUs.” (Local Limits Development Guidance, July 2004, page 1-1 to 1-2) 

 

********************************************************* 

The following are definitions included in the Local Limits Development Guidance cited above: 

 Interference. [US]EPA uses the term “interference” in its regulations to 
describe a discharge that, alone or with discharges from other sources, 
inhibits or disrupts a POTW, its treatment processes and operations, or its 
sludge processes, use, or disposal and, therefore, causes a violation of the 
POTW’s NPDES permit, increases the magnitude or duration of such a 
violation, or prevents the proper use or disposal of sewage sludge in 
compliance with the Clean Water Act, Solid Waste Disposal Act, Toxic 
Substance Control Acts, or the Marine Protection, Research and Sanctuaries 
Act. 
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 Pass Through. A discharge that enters the waters of the United States from a 
POTW in quantities or concentrations that, alone or with discharges from 
other sources, either causes a violation of any requirement of the POTW’s 
NPDES permit, or increases the magnitude or duration of a violation of the 
POTW’s NPDES permit.  

 Pollutant of Concern (POC). Any pollutant that might reasonably be expected 
to be discharged to the POTW in sufficient amounts to pass through or 
interfere with the works, contaminate its sludge, cause problems in its 
collection system, or jeopardize its workers. 
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Appendix I - Overview and Summary of Key Studies of the Toxicological 
Relevance of Reused Water 

In evaluating the toxicological relevance of recycled water to human health, the Panel relied 
primarily upon sources that had already compiled, reviewed and summarized findings from 
many of the key studies conducted over the past 40 years.  Those studies include 
epidemiological studies examining effects in humans directly, studies in which laboratory 
animals have been exposed to recycled water, bio-analytical screening studies and risk 
assessments that predict the potential effects to humans of individual CECs in recycled water 
(e.g., Schwab et al 2005, Schriks et al. 2009). The Panel’s review was greatly facilitated by a 
summary of historic studies developed by Ms. Margaret H. Nellor and forwarded to the Panel 
by Mr. David Smith of WaterReuse California. Table I.1 (A summary of Epidemiology Studies) 
and Table I.2 (Summary of Bio-analytical Screening Studies) were taken directly from the 
materials Ms. Nellor provided to Mr. Smith (Nellor 2009). Additionally the Panel found the 
summaries of previous studies in both NRC(NRC 1998) and Sloss et al. (Sloss, Geschwind et al. 
1996) to be very helpful.   

Based upon its review of this information, the Panel believes the findings of the 
epidemiological studies of recycled water are very encouraging from a human health risk 
perspective. The earliest studies were conducted in the 1970’s and 1980’s with a focus on the 
potential effects of disinfection byproducts produced following disinfection of drinking water 
with chlorine. Whilst most of these early studies find no clear association between recycled 
water use and adverse health outcomes in humans, some of the early studies report an 
increase in bladder and rectal cancers possibly associated with chlorination byproducts (see 
summary in Sloss et al., (Sloss, Geschwind et al. 1996)). More recent studies of recycled water 
find, essentially, no adverse health outcomes in populations using recycled water (see Table 
I.1). The virtual absence of adverse health outcomes from the early epidemiological studies is 
encouraging, in that treatment methods at that time were less sophisticated and their efficacy 
at removing trace chemicals was not well understood. Over the past decades, those methods 
have been refined and the amount of disinfection byproducts present in recycled water has 
decreased. Thus, if very few effects were found in recycled water in the 1970’s and 80’s, when 
disinfection byproduct concentrations were higher, than even fewer effects would be expected 
today, at least from these byproducts.  

These epidemiological findings are particularly robust because they span decades. While 
CECs have come to the forefront of public health scrutiny within the last decade, a great deal of 
that scrutiny owes to the improvements in analytical detection methods. Many of what are 
today considered CECs have likely been present in recycled water for decades (Okun 1980).  
Epidemiological studies conducted in the past likely included potential effects associated with 
CECs, even though CECs were not the focus, or even mentioned, in the studies. Indeed, as 
noted above, the earliest of those studies focused on the potential effects of disinfection by 
products because the drinking water providers and the public health community wished to 
better understand what effects, if any, were associated with what were, at that time, novel or 
new water treatment methods, including chlorination, for example. 
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That the most recent epidemiological studies find even fewer adverse effects than historic 
studies is not surprising for several reasons. Wastewater and drinking water treatment 
processes are more refined than they were two or three decades ago. Product and chemical 
registration requirements are much stricter. Compounds and products are developed with 
much greater focus on environmental stewardship. We also know a great deal more about 
chemicals and moieties that cause adverse effects, so developers are likely producing and using 
fewer chemicals with known adverse impacts, or that we have a strong suspicion might cause 
such impacts. While it seems likely the diversity and number of chemicals with an 
anthropogenic origin has increased over the past 50 years, it also seems likely that the 
knowledge we have acquired over that time about the mechanisms through which adverse 
effects are caused, may mean that the chemicals that are present may have fewer unintended 
consequences that chemicals used 50 years ago. We should also not loose site that it is not just 
man-made chemicals that are present in recycled water.  Such water contains many naturally 
occurring chemicals and always has, including hormones that humans synthesize and excrete 
naturally, phytoestrogens present in our diets that we excrete naturally, as well as many other 
compounds present in foods that we also excrete.  

Thus, the findings about that absence of adverse health effects associated with recycled 
water use is very encouraging.  However, it is important to keep in mind that all studies 
(epidemiological, laboratory animal, bio-analtycial, and risk assessments) have limitations. 
Interpretation of the results of epidemiological studies is complicated by confounding factors. 
These can include movement of people into and out of the community being studied and 
uncertainty about the exact level of exposure to compounds in recycled water (e.g., in most 
communities only a fraction of potable water is comprised of recycled water) (NRC 1998).  

A shortcoming of human health risk assessments is that most of those are conducted on a 
chemical-by-chemical basis. The effects of each individual chemical can be summed to derive an 
estimate of the effect from all the chemicals included in the evaluation but in most cases, 
information on non-additive effects of the chemicals is not available. This has led to concerns 
that mixtures of CECs may have greater effects than can be discerned by or are predicted by 
risk assessments that simply add the effects of chemicals.  Another limitation of risk 
assessments is that they only evaluate the potential effects of chemicals known or suspected to 
be present in recycled water and are limited to chemicals for which toxicity information is 
available. Recycled water almost certainly has a great many more chemicals than we are able to 
identify or have toxicity information for. The negative findings of the epidemiological studies 
are, therefore, particularly important in addressing these limitations of risk assessments.  By 
their very nature, epidemiological studies look at the mixture of compounds that may be 
present in recycled water.  

The Panel also appreciates that over the last several years awareness has grown that certain 
chronic adult diseases (such as diabetes, obesity, anxiety) may be related to exposure to 
environmental contaminants while in utero.  This is has led to the field of epigenetics (Bateson, 
Barker et al. 2004; Dolinoy, Weidman et al. 2007; Jirtle and Skinner 2007). Epigenetic changes 
are heritable changes in gene expression that do not involve mutation of DNA, but instead 
involve changes in the signals that are used to identify genes that should be temporally 
expressed in different tissues, especially during development of the fetus.  It is now clear that 
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hormones play a significant role in early fetal development and disregulation of this process can 
lead to adult disease.   Chemicals that behave as hormones can also influence this process and 
there have been reports of epigenetic effects from exposure of mice to bisphenol A (an 
estrogen mimic, (Dolinoy, Weidman et al. 2007), vinclozlin (an anti-androgen,(Skinner, Anway 
et al. 2008) ) and other environmental factors (Guerrero-Bosagna and Skinner 2009). However, 
the concentrations of chemicals that are necessary to produce these changes are several tens 
of orders of magnitude higher than concentrations found in drinking water. For bisphenol A, 
maternal exposure of rats to 50 mg/Kg/day throughout gestation and lactation influenced 
heritable epigenetic changes in the pups (Dolinoy, Weidman et al. 2007). Vinclozolin was 
administered as an intraperitoneal injection at a concentration of 100 mg/kg/day for 8 days 
during embryogenesis (Skinner, Anway et al. 2008). This exposure influenced the gene 
expression in the brain of third generation pups and significantly influenced the behavior of the 
animals causing female rats to have higher anxiety-like behavior. The reported 90th percentile 
concentration of bisphenol A in water is 286 ng/L, and there are no reported measurements for 
vinclozlin.     

The Panel felt it important to provide a brief overview of the emerging field of epigenetics 
because of its potential relevance to the assessment of chemicals in the environment.  
However, it must be pointed out that the concentrations required to cause the changes in 
above referenced studies are several orders of magnitude higher than would be found in 
treated water.  While more research to determine whether chronic exposure to very low levels 
of chemicals, as found in treated water, have any epigenetic effects would provide additional 
insight, at the time of the writing of this report, such a scenario seems unlikely.  In particular, 
the general absence of adverse human health effects reported by epidemiological studies of 
recycled water suggest that increased incidence of various diseases, regardless cause, is not 
occurring.   

Combined, the Panel views the predominantly negative findings of the epidemiological 
studies, laboratory rodent studies, bio-analytical screening studies and risk assessments as 
robust evidence that recycled water represents a source of safe drinking water. 
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Table I.1 Summary of Epidemiology Studies 

Project Description Studies/Results 

Montebello Forebay 
Groundwater 
Recharge Study, Los 
Angeles County, CA 
(Nellor et al. 1984; 
Sloss et al. 1996; Sloss 
et al. 1999)  

 

Recycled water has been 
used as a source of 
replenishment since 1962; 
other replenishment 
sources are imported river 
water (Colorado River and 
State Project water) and 
local storm runoff.  Water is 
percolated into the 
groundwater using two sets 
of spreading grounds. From 
1962 to 1977, the water 
used for replenishment was 
disinfected secondary 
effluent.  Filtration (dual-
media or mono-media) was 
added later to enhance 
virus inactivation during 
final disinfection.  During 
this time period, the 
amount of recycled spread 
annually averaged 27,000 
acre-feet (AF), which was 
16% of the inflow to the 
groundwater basin.  At that 
time an arbitrary cap of 
32,700 AFY of recycled 
water had been established. 
In 1987, the project was 
allowed in increase the 
amount of recycled water 
to 50,000 AFY. The current 
permit allows for a 
maximum recycled water 
contribution of 35% based 
on a five-year running 
average. 

The studies have looked at health outcomes for 900,000 
people that received some recycled water in their household 
water supplies in comparison to 700,000 people in a control 
population. Three sets of studies have been conducted: 1) the 
Health Effects Study, which evaluated mortality, morbidity, 
cancer incidence, and birth outcomes for the period 1962-
1980 (see Attachment 2); 2) the Rand Study, which evaluated 
mortality, morbidity, and cancer incidence for the period 1987-
1991; and 3) the second Rand Study, which evaluated adverse 
birth outcomes for the period 1982-1993. 

 

Health Effects Study (1962-1980): the epidemiological studies 
focused on a broad spectrum of health concerns that could 
potentially be attributed to constituents in drinking water.  
Health parameters evaluated included: mortality (death from 
all causes, heart disease, stroke, all cancers and cancers of the 
colon, stomach, bladder and rectum); cancer incidence (all 
cancers, and cancers of the colon, stomach, bladder, and 
rectum); infant and neonatal mortality; low birth weight; 
congenital malformations; and selected infectious diseases 
(including hepatitis A and shigella). Another part of the study 
consisted of a telephone interview of adult females living in 
recycled water and control areas. Information was collected on 
spontaneous abortions and other adverse reproductive 
outcomes, bed-days, disability-days, and perception of well-
being.  The survey was able to control for the confounding 
factors of bottled water usage and mobility. 

 

Rand (1987–1991): the study study evaluated cancer incidence 
(all cancers, and cancer of the bladder, colon, esophagus, 
kidney, liver, pancreas, rectum, stomach); mortality (death 
from all causes, cancer, cancer of the  bladder, colon, 
esophagus, kidney, liver, pancreas, rectum, stomach, heart 
disease, cerebrovascular disease); and infectious diseases 
(including giardia, hepatitis A, salmonella, shigella).   

 

Rand (1982–1993): the evaluation focused on two types of 
adverse birth outcomes: (a) prenatal development and infant 
mortality (including: low birth weight (full term only), low birth 
weight (all births), very low birth weight, preterm birth, infant 
mortality); and (b) birth defects (all defects, neural tube 
defects, other nervous system defects, ears, eyes, face, neck 
defects; major cardiac defects, patent ductus arteriosus, other 
cardiac defects, and respiratory system defects; cleft defects, 
pyloric stenosis, intestinal artesias, other digestive system 
defects; limb, other musculoskeletal, integument and all other 
defects; chromosomal syndromes and syndromes other than 
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Project Description Studies/Results 

chromosomal). 

The results from these studies found that after almost 30 years 
of groundwater recharge, there was no association between 
recycled water and higher rates of cancer, mortality, infectious 
disease, or adverse birth outcomes.  

Total Resource 
Recovery Project, City 
of San Diego (Cooper 
et al. 1992 and 1997); 
(NRC 1998) 

This is a proposed surface 
water augmentation project 
that would utilize advanced 
treated recycled water to 
supplement the Miramar 
raw reservoir water 
(current drinking water 
supply). The project and 
treatment system are 
currently being re-
evaluated. 

Baseline reproductive health and vital statistics data were 
assembled. The reproductive data were collected from 
telephone interviews of 1,100 women. Vital statistics data 
were collected on mortality, birth outcomes, and infectious 
disease. Data were also collected on neural tube birth defects 
from 1979 – 1985. 

Windhoek, South 
Africa – direct reuse 
(Isaacson and Sayed, 
1988) 

This is a direct reuse 
project. At the time the 
studies were conducted, 
the recycled water was 
treated using sand filtration 
and granular activated 
carbon, and the recycled 
water was added to 
drinking water supply 
system. The treatment 
system for this project has 
been revised since this work 
was conducted. 

The study, which was conducted for the period 1976–1983, 
looked at cases of diarrheal diseases. For the Caucasian 
population of similar socio-economic status studied, disease 
incidence was marginally lower in persons supplied with 
recycled water than those with water from conventional 
sources. Incidence rates were significantly higher in black 
populations, all of whom received conventional water only. 
Age-specific incidence rates in children of the various ethnic 
groups also showed differences characteristically associated 
with socio-economic stratification. It was concluded that the 
consumption of recycled water did not increase the risk of 
diarrheal diseases caused by waterborne infectious agents.  

Chanute, Kansas 
(Metzler et al. 1958) 

Emergency use of recycled 
water during a drought for 
150 days during 1956-57. 
The Neosho River was 
dammed below the outfall 
of the sewage treatment 
plant and the treated 
effluent backed up to the 
water intake. The 
impounding acted as waste 
stabilization and water was 
chlorinated prior to service. 
The use ended when heavy 
rains washed out the 
temporary dam. The river 
water source already 
contained wastewater prior 
to this event. 

An epidemiology study showed fewer cases of stomach and 
intestinal illness during the period recycled water was used 
than the following winter when Chanute returned to using 
river water.  
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Table I.2  Summary of Bio-analytical Screening Studies 

Project Types of Water Studied Health-effects data 

Montebello Forebay 
Groundwater 
Recharge Study, Los 
Angeles County, CA 
(Nellor et al. 1984)  

Disinfected tertiary effluent, 
storm water, and imported 
river water used for 
groundwater replenishment; 
also recovered groundwater. 

Ames Salmonella test and mammalian cell transformation 
assay. 10,000 to 20,000 x organic concentrates were used in 
Ames test and mammalian cell assays, and subsequent 
chemical identification was attempted using the Ames assays. 
Samples were collected from the late 1970s to the early 
1980s. The level of mutagenic activity (in decreasing order) 
was storm runoff > dry weather runoff > recycled water > 
groundwater > imported water. No relation was observed 
between percent recycled water in wells and observed 
mutagenicity of residues isolated from wells. The residues did 
not yield significant cytotoxicity in the mammalian cell assays  

 

To facilitate the isolation and identification of the 
components in sample concentrates, the residues were first 
fractionated by high performance liquid chromatography 
(HPLC), followed by testing of the fractions for mutagens and 
analysis of the mutagenic fractions by gas chromatography-
electron ionization mass spectrometry (GC-EIMS). Results 
indicated that mutagenicity generally occurred in the least 
polar (most hydrophobic) fractions of each sample. In most 
cases, the sum of TA98 mutagenicity in sample fractions was 
similar in magnitude to that observed in the whole sample. 
There was no evidence of synergistic effects in these assays.  
Analysis by GC-EIMS of mutagenic fractions from 34 samples 
yielded only four known Ames mutagens in six samples 
(fluoranthene, benzo(a)pyrene, N-nitrosomorpholine, and N-
nitrosopiperidine). However, these compounds were 
considered to contribute little to the observed overall 
mutagenicity of the samples. Several unknown compounds 
detected in the mutagenic fractions could not have caused 
the mutagenicity in all of the samples, because their 
frequency of occurrence, distribution in the fractions, and 
concentrations were not consistent with the bioassay results. 
Selected sample residues were then evaluated qualitatively 
by chemical derivatization techniques to determine which 
classes of compounds might be contributing to the mutagenic 
activity. Since mutagens are considered to be electrophilic, 
two nucleophilic reagents were used to selectively remove 
epoxide and organohalide mutagens from the residues. 
Analysis of mutagenic residues of groundwater and 
replenishment water by negative ion chemical ionization 
(NICI) GC-MS and Ames assay before and after derivatization 
supported (but did not unequivocally prove) the role of at 
least these two classes of electrophiles in the observed 
mutagenicity. Several samples had more than 100 reactive 
components, containing chlorine, bromine, iodine, or 
epoxides, with concentrations at the part-per-trillion level. 
However, the structures of these compounds could not be 



CEC Panel FINAL REPORT – June 2010  Appendix I 

 I - 7 

Project Types of Water Studied Health-effects data 

determined by NICI, nor were the sources of the compounds 
identified. Because positive chemical identifications of 
specific mutagens could not be made and because the 
estimated concentrations of the components were so low, 
the biological significance of these materials remained in 
doubt.  

 

Follow-up toxicity testing of recycled water residues in the 
mid-1990s (not published) showed no Ames test response, 
while preserved residues from the earlier testing still showed 
a response indicating that the character of the recycled water 
has changed over time, perhaps as a result of increased 
source-control activities. 

Denver Potable Water 
Reuse Demonstration 
Project (Lauer et al. 
1996; NRC (NRC 1998) 

AWT effluent (with 
ultrafiltration or reverse 
osmosis) and finished 
drinking water (current 
supply).  The purpose of the 
project was to evaluate the 
feasibility of direct reuse by 
producing high quality 
recycled water; it was not 
implemented. 

150 to 500 x organic residue concentrates used in 2-year in 
vivo chronic/carcinogenicity study in rats and mice and 
reproductive/teratology study in rats. No treatment-related 
effects observed. 

Tampa Water 
Resource Recovery 
Project (CH2M Hill, 
1993, Pereira et al. 
undated; NRC, 1988)  

AWT effluent (using GAC and 
ozone disinfection) and 
Hillsborough River water 
using ozone disinfection 
(current drinking water 
supply). The proposed 
project involved 
augmentation of the 
Hillsborough River raw water 
supply; it was not 
implemented. 

Up to 1,000 x organic concentrates used in Ames Salmonella, 
micronucleus, and sister chromatid exchange tests in three 
dose levels up to 1000 x concentrates. No mutagenic activity 
was observed in any of the samples. In vivo testing included 
mouse skin initiation, strain A mouse lung adenoma, 90-day 
subchronic assay on mice and rats, and a reproductive study 
on mice. All tests were negative, except for some fetal 
toxicity exhibited in rats, but not mice, for the AWT sample. 

Total Resource 
Recovery Project, City 
of San Diego (Cooper 
et al. 1992 and 1997); 
(NRC 1998) 

AWT effluent (reverse 
osmosis and GAC) and 
Miramar raw reservoir water 
(current drinking water 
supply). This is a proposed 
surface water augmentation 
project that would utilize 
AWT recycled water to 
supplement the Miramar 
raw reservoir water. The 
project and treatment 
system are currently being 
re-evaluated. 

150–600 x organic concentrates used in Ames Salmonella 
test, mouse micronucleus, 6-thoguanine resistance, and 
mammalian cell transformation assays. The Ames test 
showed some weak mutagenic activity, but recycled water 
was less active than drinking water. The micronucleus test 
showed positive results only at the high (600x) doses for both 
types of water. The 6-thoguanine assay run on whole samples 
and fractions of each type of water showed no mutagenic 
effect. The mammalian cell transformation assay, showed a 
strong response for the Miramar sample, but the single test 
may not have been significant. 

 

In vivo fish biomonitoring using fathead minnows (28-day 
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Project Types of Water Studied Health-effects data 

bioaccumulation and swimming tests) showed no positive 
results. There was greater evidence of bioaccumulation of 
pesticides in fish exposed to raw water than recycled water. 

Potomac Estuary 
Experimental 
Wastewater 
Treatment Plant 
(James M. 
Montgomery, Inc., 
1983; NRC, 1998) 

Study of the wastewater-
contaminated Potomac River 
Estuary; 1:1 blend of estuary 
water and nitrified 
secondary effluent, AWT 
effluent (filtration and GAC), 
and finished drinking waters 
from three water treatment 
plants. 

150 x organic concentrates used in Ames Salmonella and 
mammalian cell transformation tests. Results showed low 
levels of mutagenic activity in the Ames test, with AWT water 
exhibiting less activity than finished drinking water. The cell-
transformation test showed a small number of positive 
samples with no difference between AWT water and finished 
drinking water. 

Windhoek, South 
Africa – direct reuse 
(NRC, 1998) 

AWT effluent (sand 
filtration, GAC). This is a 
direct reuse project with the 
recycled water was added to 
drinking water supply 
system. The treatment 
system has been revised 
since this work was 
conducted. 

Ames test, urease enzyme activity, and bacterial growth 
inhibition. In vivo tests include water flea lethality and fish 
biomonitoring (guppy breathing rhythm). 

Singapore Water 
Reclamation Study 
(Khan and Roser 2007)  

AWT effluent 
(microfiltration, reverse 
osmosis, UV irradiation) and 
untreated reservoir water. 
The largest amount of 
Singapore’s NeWater is 
currently used for industrial 
(semi-conductor 
manufacturing) and 
commercial use. A smaller 
amount is blended with raw 
water in reservoirs, which is 
then treated for domestic 
use. 

Japanese medaka fish (Oryzias latipes) testing over a 12-
month period with two generations of fish showed no 
evidence of carcinogenic or estrogenic effects in AWT 
effluent; however, the study was repeated owing to design 
deficiencies. The repeated fish study was completed in 2003 
and confirmed the findings of no estrogenic or carcinogenic 
effects. 

  

Groups of mouse strain (B6C3F1) fed 150 x and 500 x 
concentrates of AWT effluent and untreated reservoir water 
over 2 years. The results presented to an expert panel 
indicated that exposure to concentrated AWT effluent did not 
cause any tissue abnormalities or health effects. 

 

Santa Ana River Water 
Quality Monitoring 
Study (Woodside, 
2007) 

Shallow groundwater 
adjacent to the SAR and 
control water. 

This is an unplanned indirect 
potable reuse project where 
OCWD diverts SAR water for 
recharge into the Orange 
County Groundwater Basin. 
The SAR base flow is 
comprised primarily of 
tertiary-treated effluent. 

Three rounds of testing were conducted in 2004 and 2005. In 
the first two rounds, Japanese Medaka fish were analyzed for 
tissue pathology, vitellogenin induction, reproduction, and 
gross morphology. In the third round, fish were analyzed for 
vitellogenin induction, reproduction, limited tissue pathology, 
and gross morphology. In the first two rounds, no statistically 
significant differences in gross morphological endpoints, 
gender ratios, tissue pathology, or reproduction were 
observed between the test water (shallow groundwater 
adjacent to the SAR) and the control water. In the third 
round, no statistically significant differences were observed in 
reproduction, tissue pathology (limited to evaluation of 
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Project Types of Water Studied Health-effects data 

gonads and ovaries), or vitellogenin induction between the 
test water and the control water. 

Soil Aquifer Treatment 
Study (Fox et al. 2006)  

Wastewater (various 
facilities), soil aquifer 
treatment water, storm 
water 

The study used a variety of analytical methods to characterize 
and measure chemical estrogenicity: in vitro methods 
(estrogen binding assay, glucocorticoid receptor competitive 
binding assay, yeast-based reporter gene assay ,and MCF-7 
cell proliferation assay); in vivo fish vitellogenin synthesis 
assay; enzyme-linked immunosorbent assays (ELISAs); and 
gas chromatography–mass spectrometry (GC/MS). 
Procedures were developed to extract estrogenic compounds 
from solids, liquid/liquid methods for direct extraction from 
aqueous suspensions such as primary and secondary 
effluents, and concentration of estrogenic (and other) 
organics on hydrophobic resins followed by organic 
fractionation during elution in a solvent (alcohol/water) 
gradient. Field applications of these techniques were 
designed to measure estrogenic activity derived from 
conventional wastewater treatment and from soil aquifer 
treatment (SAT). The stability of estrogenic contaminants that 
are removed on soils SAT was investigated by extracting and 
measuring nonylphenol from infiltration basin soils as well as 
by measuring total estrogenic activity in soil extracts. The 
researchers attempted to separate and measure estrogenic 
and anti-estrogenic activities in wastewater effluent and 
conducted a multi-laboratory experiment in which a variety 
of wastewater effluents and effluents spiked with known 
concentrations of specific estrogenic chemicals were tested 
for estrogenic activity. Significant variability in recycled water 
estrogenicity was observed in bioassay results. Facilities with 
the longest hydraulic retention times tended to have the 
lowest observed levels of estrogenicity. Estrogenicity was 
efficiently removed during SAT. The study also presented 
information on the advantages and disadvantages of the 
bioassay test procedures evaluated. 

Toxicological 
Relevance of  EDCs 
and Pharmaceuticals 
in Drinking Water – 
Water Research 
Foundation #3085 
(Snyder et al. 2007; 
2008) 

Drinking water (20 facilities), 
wastewater (4 facilities - raw 
and recycled), and food 
products. 

The researchers used an in vitro cellular bioassay (E-screen) 
with a method reporting limit (MRL) of 0.16 ηg/L; results 
were also converted to estradiol equivalents. The results 
showed that the vast majority of drinking waters were less 
than the MRL. The level of estrogenicity (in decreasing order) 
was food and beverage products (particularly soy based 
products) > raw wastewater > recycled water > finished 
drinking water. 
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Appendix J - Summary of Drinking Water Benchmarks for CECs 

CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

1,1,1,2-Tetrachloroethane   30 1.0E+03                   

1,1,1-Trichloroethane                       2.0E+05 

1,1-Dichloroethane   200 6.1E+03                   

1,1-Dichloroethene           na 3.0E+04           

1,2,3,4,6,7,8-Heptachlorodibenzo-
1,4-dioxin 

                      3.0E+00 

1,2,3,4,6,7,8-
Heptachlorodibenzofuran 

                      3.0E+00 

1,2,3,4,7,8,9-
Heptachlorodibenzofuran 

                      3.0E+00 

1,2,3,6,7,8-Hexachlorodibenzo-1,4-
dioxin 

                      3.0E+00 

1,2,3,7,8-Pentachlorodibenzofuran                       6.0E-02 

1,2,3-Trichloropropane (1,2,3-TCP) 5.0E+00 6 5.0E+00                   

1,2,4-Trimethylbenzene 3.3E+05 50 3.5E+05                   

1,2-Dibromo-3-chloropropane                       2.0E+02 

1,3,5-Trimethylbenzene 3.3E+05                       

1,3-Butadiene   na 1.0E+01                   

1,3-Dinitrobenzene   0.1 7.0E+02                   

1,4-Dichlorobenzene                       7.5E+04 

1,4-Dioxane 3.0E+03 na 3.0E+03             na 3.0E+04 3.0E+04 

1,7-Dimethylxanthine 
(Paraxanthine) 

          na 7.0E+02           

17 α-ethinyl estradiol   na 2.8E+02     0.000043 1.5E+00 0.0001 3.5E+00       



CEC Panel FINAL REPORT Appendix J 

 J - 2 

CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

17α-estradiol   0.05 3.5E+02     na 1.8E+02           

17β-estradiol   0.05 9.0E-01     0.05 1.8E+02 0.05 1.8E+03       

1-Butanol   100 7.0E+05                   

2,3,4,7,8-Pentachlorodibenzofuran                       6.0E-03 

2,3,7,8-Tetrachlorodibenzo-1,4-
dioxin 

                      6.0E-03 

2,3,7,8-Tetrachlorodibenzofuran                       3.0E-01 

2,4,5-Trichlorophenol                       1.8E+04 

2,4,6-Trichlorophenol           na 2.0E+04         1.8E+04 

2,4,6-Trinitor-1,3-dimethyl-5-tert-
butylbenzene (musk xylene) 

          100 3.5E+05           

2,4,6-Trinitrotoluene (TNT) 1.0E+03                       

2,4-D (2,4-Dichlorophenoxyacetic 
acid) 

          na 3.0E+04     10 3.0E+04   

2,4-Dichlorophenol           na 2.0E+05         1.8E+04 

2,4-Dimethylphenol                       1.0E+05 

2,5-Dihydroxybenzoic acid           na 7.0E+03           

2,6-Dichlorobenzamide (BAM)                   15 5.3E+04   

2,6-Dichlorophenol           3 1.0E+04           

2,6-Dinitrotoluene                       6.0E+03 

2,6-di-tert-butyl-1,4-benzoquinone 
(2,6-bis(1,1-dimethylethyl)-2,5-
Cyclohexadiene-1,4-dione) 

          na 1.4E+01           
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Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

2,6-di-tert-butylphenol (2,6-bis(1,1-
dimethylethyl)phenol) 

          na 2.0E+03           

2,7-Dichlorodibenzo-p-dioxin 
(DCDD) 

          0.02 1.6E-02           

2-Butanone                       3.6E+06 

2-Butoxyethanol                       3.0E+06 

2-Chloronaphthalene                       4.8E+05 

2-Chlorotoluene 1.4E+05 20 1.4E+05                   

2-Methoxyethanol   3 2.1E+04                   

2-Phenylphenol           na 1.0E+03           

2-Propen-1-ol   5 3.5E+04                   

3-Hydroxycarbofuran   0.06 4.2E+02                   

4,4'-DDE           na 2.0E+04           

4,4'-DDT           na 2.0E+04           

4,4-Methylenedianiline   na 2.2E+01                   

4-Acctyl-6-t-butyl-1,1-
dimethylindan 

          na 7.0E+03           

4-Chloro-3-methylphenol                       7.0E+05 

4-Chlorophenol           3 1.0E+04           

4-Chlorotoluene 1.4E+05 20 1.4E+05                   

4-Cumylphenol           na 3.5E+02           

4-Isopropyltoluene                       3.0E+03 

4-Methyl-2-Pentanone                       7.0E+06 

4-Methylbenzenesulfonamide                   750 2.6E+06   



CEC Panel FINAL REPORT Appendix J 

 J - 4 

CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

4-Methylphenol (p-cresol)           170 6.0E+05         3.0E+05 

4-Nitrophenol           8 3.0E+04           

4-Nonylphenol (4NP)           150 5.0E+05 50 1.8E+06       

4-tert octylphenol           15 5.0E+04           

5-methyl-1H-benzotriazole           na 7.0E+00           

6-Acetyl-1,1,2,4,4,7-
hexamethyltetraline 

          na 4.0E+03           

Acephate   1.2 4.0E+03                   

Acetaldehyde   10000 2.3E+04                 1.0E+04 

Acetamide   na 5.0E+02                   

Acetaminophen    50 3.5E+05 340 5.0E+06               

Acetochlor   20 1.4E+05                   

Acetochlor ethane sulfonic acid 
(ESA) 

  na 1.6E+05                   

Acetochlor oxanilic acid (OA)   na 1.6E+05                   

Acetone                       5.4E+06 

Acetophenone           100 4.0E+05           

Acrolein   0.5 3.5E+03                 3.0E+03 

Alachlor (Lasso)           na 2.0E+03           

Alachlor ethanesulfonic acid (ESA)   na 1.1E+06                   

Alachlor OA   na  4.0E+02                   

Albuterol       2.8 4.1E+04               

Aldicarb sulfone                       6.0E+03 

Aldicarb sulfoxide                       6.0E+03 
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Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 
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(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 
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(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Alpha-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid (AMPA) 

                  300 9.0E+05   

Alprazolam           0.0071 2.5E+02           

Aluminum           na 2.0E+05           

Amidotrizoic acid (diatrizoic acid)                   na 2.5E+08   

Amoxycillin           0.43 1.5E+03           

Anatoxin-a   0.5 3.5E+03                   

Androsterone           na 1.4E+04           

Anhydro-erthromycin A           5 1.8E+04           

Aniline   7 6.0E+03                 4.2E+04 

Anthracene           na 1.5E+05           

Antipyrine           28.4 1.0E+06           

Aspirin           8.3 2.9E+04     7 2.5E+04   

Atenolol               2 7.0E+04       

Atorvastatin           0.14 5.0E+03 0.54 1.9E+04       

Atrazine           na 4.0E+04 0.1 3.0E+03     2.0E+03 

Azinphos-methyl           na 3.0E+03           

Azithromycin           11 3.9E+03           

Azobenzene                       3.0E+03 

Bensulide   5 3.5E+04                   

Bentazone                   100 3.0E+05   

Benzene                   na 1.0E+04 3.0E+03 

Benzo(a)pyrene           na 1.0E+01           
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Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Benzoic acid                       2.4E+07 

Benzothiozole                   26 9.0E+04   

Benzotriazole (1H-benzotriazole)                   295 1.0E+06   

Benzyl alcohol                       3.0E+06 

Benzyl chloride   na 2.0E+02     na 2.0E+02           

Betaxolol           0.28 1.0E+04           

Bezafibrate(Benzafibrate)           8.6 3.0E+05           

Bis(2-ethylhexyl)adipate                       2.4E+06 

Bis(2-ethylhexyl)phthalate                       2.4E+04 

Bis(chloroisopropyl)ether (BCIPE)                   40 1.4E+05   

Bisoprolol           0.018 6.3E+02           

Bisphenol A   50 3.5E+05     50 2.0E+05 50 1.8E+06     3.0E+05 

Bisphenol A diglycidyl ether                       1.0E+06 

Boron 1.0E+06         na 4.0E+06           

Bromide           1000 7.0E+06           

Bromine           1000 7.0E+06           

Bromoacetic acid           na 3.5E+02           

Bromochloroacetonitrile           na 7.0E+02           

Bromochloromethane   10 7.0E+04     10 4.0E+04         9.0E+04 

Bromodichloromethane           na 6.0E+03         1.8E+04 

Bromoform           na 1.0E+05         1.0E+05 

Bromomethane   1.4 9.8E+03                 6.0E+03 

Bromophos-ethyl           na 1.0E+04           
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California 
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(ng/L) 
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b
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Schriks et al. (2009)

f
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et al. 
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(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 
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(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Butylated hydroxyanisole (3-tert-
butyl-4-hydroxy anisole) (BHA) 

  na 5.8E+02     500 1.8E+06           

Butylated hydroxytoluene (2,6-Di-
tert-Butyl-p-Cresol) 

          300 1.0E+06           

Butylbenzyl phthalate               100 3.5E+06     1.2E+06 

Caffeine           na 3.5E+02           

Captan   130 1.5E+04                   

Carazolol           0.01 3.5E+02           

Carbamazepine           2.8 1.0E+05 0.34 1.2E+04 0.34 1.0E+03   

Carbendazim           na 1.0E+05     30 1.1E+05   

Carbon disulfide 1.6E+05 100 7.0E+05                 6.0E+05 

Carbon tetrachloride                       4.2E+03 

[(Carboxymethyl)imino 
bis(ethylenenitrilo)] tetra acetic 
acid 

          na 5.0E+03           

Cefaclor           7.1 2.5E+05           

Cephalexin           10 3.5E+04           

CFC-12   200 1.4E+06                   

Chloral hydrate                       6.0E+05 

Chloramphenicol           5 1.8E+05           

Chlorate 8.0E+05 30 2.1E+05                 4.2E+06 

Chlordane (gamma-chlordane)           na 1.0E+03           

Chlorfenvinphos                       4.2E+03 

Chloridazon (pyrazon)                   54 1.9E+05   
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California 
Drinking 
Water 
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(2007)

a
 

(ng/L) 

 
USEPA CCL 3 
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b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
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(µg/kg/day) 
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(µg/kg/day) 
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(µg/kg/day) 
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(µg/kg/day) 

 
DWEL 
(ng/L) 
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RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Chloroform           na 2.0E+05         6.0E+04 

Chloromethane   4 2.7E+03                 2.4E+04 

Chlorophene           na 3.5E+02           

Chlorotetracycline           30 1.1E+05           

Chlorpropham                       1.2E+06 

Chlorpyrifos           na 1.0E+04           

Chlorpyrifos-methyl           na 1.0E+04           

Cholesterol           na 7.0E+03           

Cimetidine        29 4.2E+05 5.7 2.0E+05           

Ciprofloxacin       1.6 2.3E+04 7.1 2.5E+05           

Clarithromycin           7.1 2.5E+05           

Clenbuterol           4.2 1.5E+04           

Clethodim   10 7.0E+04                   

Clindamycin           8.6 3.0E+05           

Clofibric acid (clofibrate)           21.4 7.5E+05     10 3.0E+04   

Cobalt   10 7.0E+04                   

Codeine        2 2.9E+04 1.4 5.0E+04           

Copastanol           na 7.0E+02           

Cotinine           0.28 1.0E+04           

Coumarin           na 5.0E+02           

Cumene hydroperoxide   na 7.6E+04                   

Cylcophosphamide           0.1 3.5E+03           

Cylindrospermopsin   0.03 2.1E+02                   
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California 
Drinking 
Water 
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(ng/L) 

 
USEPA CCL 3 
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f
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et al. 
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(µg/kg/day) 
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(µg/kg/day) 
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DWEL 
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(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Cypermethrin           na 5.0E+02           

Dalapon                       1.8E+05 

Dehydronifedipine        100 1.5E+06 0.57 2.0E+04           

Demeclocycline           8.6 3.0E+05           

Demeton-S           0.04 1.5E+02           

Diatrizoate sodium           na 3.5E+02           

Diatrizoic acid           na 3.5E+02           

Diazepam (Valium)           0.071 2.5E+03 1 3.5E+04       

Diazinon   0.2 1.4E+03     na 3.0E+03         1.2E+03 

Dibromoacetonitrile                       7.0E+04 

Dibromochloromethane           na 1.0E+05         8.0E+04 

Dibutyl phthalate                       3.1E+05 

Dibutyltin (DBT)           0.25 2.0E+03           

Dichloroacetic acid           na 1.0E+05         7.0E+03 

Dichloroacetonitrile           na 2.0E+03         2.0E+04 

Dichlorodifluoromethane (Freon 
12) 

1.0E+06                       

Dichlorodiphenyldicloroethane 
(DDD) 

                      1.0E+03 

Dichlorvos           na 1.0E+03           

Diclofenac           0.5 1.8E+03 67 2.3E+06       

Dicrotophos   0.07 4.9E+02                   

Dieldrin                       3.0E+01 

Diethyl glycol dimethyl ether                   50 1.8E+05   
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Drinking 
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Schriks et al. (2009)

f
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et al. 
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g
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(µg/kg/day) 
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(µg/kg/day) 
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(µg/kg/day) 
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(µg/kg/day) 

 
DWEL 
(ng/L) 
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(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Diethyl phthalate                   800 2.8E+06 8.0E+05 

Diethylamine (DEA)                   2140 7.5E+05   

Diethylene triamine penta acetic 
acid 

                  100 3.5E+05   

Diethylhexyl phthalate               12 4.2E+05       

Digoxigenin        0.07 1.0E+03               

Digoxin       0.07 1.0E+03               

Diltiazem        14 2.0E+05 1.7 6.0E+04           

Dimethenamid                   70 2.5E+05   

Dimethipin   21.8 1.5E+05                   

Dimethoate   2.2 1.5E+04     na 5.0E+04           

Dimethyl phthalate                       3.0E+03 

Dimethylamine (DMA)                   540 1.9E+05   

Di-n-butyl phthalate           10 3.5E+04           

Dipyrone           150 5.3E+05           

Disulfoton   0.13 9.1E+02                   

Diuron   3 1.8E+03     na 3.0E+04     2 7.0E+03 1.8E+04 

Dodecylguanidine acetate                       2.4E+04 

Doxycycline       30 4.4E+05 3 1.1E+04           

Enalaprilat (enalapril)       70 1.0E+06 0.036 1.3E+03 0.23 8.1E+03       

Endosulfan                       3.6E+04 

Endosulfan sulfate           na 3.0E+04           

Endrin                       1.8E+03 
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Drinking 
Water 

Notification 
Levels 
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USEPA CCL 3 
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(µg/kg/day) 
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DWEL 
(ng/L) 

TDI, ADI, or 
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(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Enrofloxacin           6.2 2.2E+04           

Equilenin   0.05 3.5E+02     0.00086 3.0E+01           

Equilin   0.05 3.5E+02     0.00086 3.0E+01           

Erythromycin-H2O   0.7 4.9E+03 40 5.8E+05 5 1.8E+04           

Estriol   0.05 3.5E+02     0.0014 5.0E+01           

Estrone   0.05 3.5E+02     0.00086 3.0E+01 0.013 4.6E+02       

Ethion           na 3.0E+03           

Ethoprop   0.1 7.0E+02                   

Ethoprophos (Mocap)           na 1.0E+03           

Ethyl tert-butyl ether (ETBE)                   150 5.3E+05   

Ethylene glycol 1.4E+07 2000 1.4E+07                   

Ethylene oxide   na 1.1E+02                   

Ethylene thiourea   0.2 6.0E+01                   

Ethylenediaminetetraacetic acid 
(EDTA) 

          na 2.5E+05     1900 6.0E+05   

Fenamiphos   0.1 7.0E+02                   

Fenoprofen           12.9 4.5E+05           

Fenthion (fenthion-methyl)           na 5.0E+02           

Fluorene                       2.4E+05 

Fluoxetine (Prozac)       2.9 4.2E+04 0.28 1.0E+04 0.97 3.4E+04       

Formaldehyde 1.0E+05 200 1.4E+06                 1.2E+06 

Fyrol FR 2 (tri(dichlorisopropyl 
phosphate) 

          na 1.0E+06           
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(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 
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(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Galaxolide           500 1.8E+06           

Gemfibrozil        55 8.0E+05 17 6.0E+05 1.3 4.5E+04       

Germanium   na 7.4E+02               

Glyoxal   200 1.4E+06                   

Glyphosate                   300 9.0E+05   

HCFC-22   na 3.2E+04                   

Heptachlor                       4.0E+02 

Hexachlorobenzene                       4.8E+03 

Hexane   60 4.2E+05                   

HMX 3.5E+05                       

Hydrazine   na 1.0E+01                   

Ibuprofen        110 1.6E+06 11.4 4.0E+05           

Imidacloprid                   60 2.1E+05   

Indomethacin           0.71 2.5E+04           

Iodide           17 1.0E+05           

Iohexol           20.6 7.2E+05       3.8E+08   

Iomeprol (iomeron)                   1900 6.7E+06   

Iopamidol           11.4 4.0E+05       4.2E+08   

Iopromide           21.4 7.5E+05       2.5E+08   

Isophorone                       4.0E+05 

Isophosphamide           0.1 3.5E+03           

Isopropylbenzene 7.7E+05                     6.0E+05 
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TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Isoproturon                   3 9.0E+03   

Ketoprofen           1 3.5E+03           

Lincomycin       25 3.7E+05 1000 3.5E+06           

Lindane (gamma-BHC)           na 2.0E+04 0.56 2.0E+04     2.0E+02 

Linuron   2 5.6E+04         2 7.0E+04       

Malathion           na 9.0E+05           

Manganese 5.0E+05         na 5.0E+05           

m-Dichlorobenzene                       5.4E+05 

Meprobramate               7.5 2.6E+05       

Mestranol   na 2.8E+02     0.000071 2.5E+00           

Metformin        62 9.1E+05 7.1 2.5E+05           

Methamidophos   0.3 2.1E+03                   

Methanol   500 3.5E+06                   

Methomyl                       1.5E+05 

Methoxychlor               0.02 7.0E+02     2.0E+04 

Methyl isobutyl ketone (MIBK) 1.2E+05                       

Methyl tert-butyl ether (MTBE)   na 1.9E+04             300 9.4E+06 6.0E+04 

Methylene chloride 
(dichloromethane) 

          na 4.0E+03         5.0E+03 

Methyl-oxirane   1 2.3E+02                   

Metolachlor   100 7.0E+05     na 3.0E+05           

Metolachlor (ESA)   na 7.0E+06                   

Metolachlor (OA)   na 7.0E+06                   

Metoprolol           0.71 2.5E+04     14 5.0E+04   



CEC Panel FINAL REPORT Appendix J 

 J - 14 

CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Microcystin-LR   0.003 2.1E+01                   

Mirex                       4.8E+03 

Molinate   2 1.4E+04                   

Molybdenum   5 3.5E+04     na 5.0E+04           

Monensin           10 3.5E+04           

Monobutyltin (MBT)           na 7.0E+02           

Monochloroacetic acid                       6.0E+04 

Musk ketone           100 3.5E+05           

Musk tibetene           na 3.5E+02           

N,N-diethyltoluamide (NN-diethyl-
3-methylbenzamide (DEET) 

          750 2.5E+03     1800 6.3E+06   

Nadolol           0.57 2.0E+04           

Naladixic Acid           28.4 1.0E+06           

Naphthalene 1.7E+04         na 7.0E+04         1.2E+05 

Naproxen           6.3 2.2E+05 570 2.0E+07       

n-Butylbenzene 2.6E+05                       

n-Butylbenzenesulphonamide                   83 2.9E+05   

Nicosulfuron                   200 7.0E+05   

Nitrilotriacetic acid (NTA)           na 2.0E+05         2.0E+05 

Nitrobenzene   2 1.4E+04                 1.2E+04 

N-methyl-2-pyrrolidone   600 4.2E+06                   

N-nitrosodiethylamine (NDEA) 1.0E+01 na 2.0E-01     na 1.0E+01           
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CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

N-nitrosodimethylamine (NDMA) 1.0E+01 0.008 6.9E-01     na 1.0E+01     na 1.0E+02   

N-nitrosodi-n-propylamine (NDPA) 1.0E+01 na 5.0E+00                   

N-nitrosomorpholine (NMOR)           na 1.0E+00           

N-nitrosopyrrolidine (NPYR)   na 2.0E+01                   

N-Octadecane                       3.0E+03 

Norethindrone   16.7 4.0E+01     0.0071 2.5E+02           

Norfloxacin       190 2.8E+06 11.4 4.0E+05           

Norfluoxetine               0.97 3.4E+04       

n-Propylbenzene 2.6E+05 na 5.8E+03                   

Octachlorodibenzo-4-dioxin                       3.0E+02 

Octachlorodibenzo-p-dioxin 
(OCDD) 

          0.02 1.6E-02           

Octylphenol               150 5.3E+06       

o-Dichlorobenzene                       9.0E+04 

o-Toluidine   na 1.9E+02                   

Oxamyl                       6.0E+03 

Oxydemeton-methyl   0.13 9.1E+02                   

Oxyfluorfen   3 4.8E+02                   

Oxytetracycline       30 4.4E+05 30 1.1E+05           

p,p'-Sulfonyldiphenol                   17 6.0E+04   

Paracetamol           50 1.8E+05           

Parathion (ethyl parathion)           na 1.0E+04           

Parathion-methyl (methyl 
parathion) 

          na 1.0E+05           
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CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Paroxetine metabolite        2.9 4.2E+04               

PCB 105           0.02 1.6E-02           

PCB 118           0.02 1.6E-02           

PCB 156           0.02 1.6E-02           

PCB 167           0.02 1.6E-02           

PCB 169           0.02 1.6E-02           

PCB 77           0.02 1.6E-02           

p-Dichlorobenzene                       7.5E+04 

Penicillin G           0.43 1.5E+03           

Penicillin V           0.43 1.5E+03           

Pentachlorophenol           na 1.0E+04           

Pentamethyl-4,6-dinitroindane           na 3.5E+02           

Perchlorate   0.7 4.9E+03                   

Perfenofos   0.05 3.5E+02                   

Perfluoroctane sulfonate (PFOS)   na 2.0E+02             0.15 5.0E+02   

Perfluorooctanoic acid (PFOA)   na 1.1E+03             1.5 5.3E+03   

Permethrin   50 3.7E+03                   

Phenanthrene           na 1.5E+05         2.4E+05 

Phenazone                   36 1.3E+05   

Phenol           40 1.5E+05         2.4E+05 

Phenytoin (Dilantin)   na 1.2E+04         0.19 6.8E+03       

Phthalic anhydride           2000 7.0E+06           

Progesterone           30 1.1E+05           



CEC Panel FINAL REPORT Appendix J 

 J - 17 

CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Prometon                       9.0E+04 

Propachlor 9.0E+04                       

Propranolol           1.14 4.0E+04           

Propylenedinitrilotetraacetic acid 
(PDTA) 

          na 7.0E+02           

Pyrene           na 1.5E+05           

Pyridine                       6.0E+03 

Quinoline   na 1.0E+01                   

Ranitidine        11 1.6E+05               

RDX 3.0E+02 3 3.0E+02                   

Risperidone               0.014 4.9E+02       

Roxithromycin           4.3 1.5E+05           

Salbutamol           0.086 3.0E+03           

Salicylic acid            na 1.1E+05           

sec-Butylbenzene 2.6E+05 na 1.0E+04                 3.0E+03 

Silver           na 1.0E+05           

Simazine           na 2.0E+04     520 2.0E+03   

Simvastatin               0.54 1.9E+04       

Stigmastanol           28.4 1.0E+06           

Strontium   600 4.2E+06                   

Sulfadimethoxine           10 3.5E+04           

Sulfamethazine           10 3.5E+04           

Sulfamethiazole           10 3.5E+04           
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CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Sulfamethoxazole       130 1.9E+06 10 3.5E+04 510 1.8E+07 130 4.4E+05   

Sulfasalazine           14.2 5.0E+05           

Sulfate           na 5.0E+08           

Sulfathiazole       50 7.3E+05               

Tebuconazole   29 2.1E+05                   

Tebufenozide   18 1.3E+05                   

Tellurium   na  1.8E+05                   

Temazepam           0.14 5.0E+03           

Terbufos   0.05 3.5E+02                   

Terbufos sulfone   0.05 3.5E+02                   

Terbutaline           0.13 4.5E+03           

tert-Butylbenzene 2.6E+05 na 1.0E+04                   

Tertiary butyl alcohol (TBA) 1.2E+04 na 6.3E+05                 6.0E+06 

Testosterone           2 7.0E+03           

Tetrachloroethylene                       5.0E+03 

Tetracycline       30 4.4E+05 30 1.1E+05           

Thiodicarb   30 1.9E+03                   

Thiophanate           na 5.0E+03           

Thiophanate-methyl   80 3.0E+03                   

Timolol           0.28 1.0E+04           

Tolfenamic acid           5 1.8E+04           

Toluene                       4.8E+05 

Toluene diisocyanate   na 9.0E+02                   
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CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Tolyltriazole                   250 8.8E+05   

Tri(butyl cellosolve) phosphate 
(ethanol,2-butoxy-phosphate) 

          15 5.0E+04           

Tribufos   1 7.0E+03                   

Tributyl phosphate           na 5.0E+02           

Tributyltin (TBT)           na 1.0E+03           

Tributyltin Oxide                       9.0E+00 

Trichloroacetic acid           na 1.0E+05         6.0E+04 

Trichloroethene                   1.5 2.0E+04 5.0E+03 

Triclosan           na 3.5E+02 75 2.6E+06     5.0E+05 

Triethylamine   na 2.3E+03                   

Triethylphosphate (TEP)                   560 2.0E+06   

Trifluralin           na 5.0E+04           

Trihalomethanes (total)                       8.0E+04 

Trimethoprim       4.2 6.1E+04 20 7.0E+04 190 6.7E+06       

Triphenyl phosphate           na 1.0E+03           

Triphenylphosphine oxide (TPPO)                   8 2.8E+04   

Triphenyltin hydroxide (TPTH)   0.3 1.9E+00                   

Tris(2-chloroethyl)phosphate 
(TCEP) 

  300 2.5E+03     Na 1.0E+03     22 7.7E+04   

Tylosin           300 1.1E+06           

Urethane   na 3.5E+01                   

Urotropine                   150 5.0E+05   
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CEC 

Summary of Drinking Water Benchmarks for Contaminants of Emerging Concern (CECs) 

California 
Drinking 
Water 

Notification 
Levels 
(2007)

a
 

(ng/L) 

 
USEPA CCL 3 

List/PCCL
b
 

 
Schwab (2005)

c
 

 
Australia (2008)

d
 

 
AwwaRF (2008)

e
 

 
Schriks et al. (2009)

f
 

Cotruvo 
et al. 

(2010)
g
 

 
ADI or RfD 

(µg/kg/day) 

 
PNEC 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
PNECdw 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWG 
(ng/L) 

 
ADI 

(µg/kg/day) 

 
DWEL 
(ng/L) 

TDI, ADI, or 
RfD 

(µg/kg/day) 

 
PGV 

(ng/L) 

Lowest 
Guideline 

Value 
(ng/L) 

Vanadium 5.0E+04 3 2.1E+04                   

Vinclozolin   25 5.5E+02         12 4.2E+05       

Warfarin        0.16 2.3E+03               

Xylenes (total)                       5.0E+05 

Ziram   16 5.7E+02                   

α-BHC           na 2.0E+04           

α-Hexachlorocyclohexane   na 6.0E+00                   

β-BHC           na 2.0E+04           

Notes: 

na = not available; an ADI or RfD is not available for this chemical 

ADI = acceptable daily intake 

PNECdw = predicted no effect concentration in drinking water 

DWG = drinking water guideline 

DWEL = drinking water equivalent level 

TDI = tolerable daily intake 

RfD = reference dose 

PGV = provisional guideline value 

µg/kg/day = micrograms per kilogram per day 

ng/L= nanograms per liter 

 

Highlighted cells indicate selected DWEL based on the following heirarchy:  CA, CCL, then lowest of the remaining values.   

a. From CA Dept of Public Health. 2007. Drinking Water Notification Levels and Response Levels:  An Overview.Drinking Water Program. 
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b. From USEPA CCL 3 and CA PCC Dossier of Chemicals   

c. From Table 6 in Schwab et al. 2005.  Human pharmaceuticals in US surface waters: a human health risk assessment.  Regulatory Toxicology and Pharmacology 42: 296-312.  
d. From Tables 4.4, A1, A2, A8a, and A8b in Environment Protection and Heritage Council et al. 2008.  Australian Guidelines for Water Recycling.  Augmentation of Drinking 
Water Supplies.  May 2008.   

e. From Tables 9.1 and 9.2 in Snyder et al. 2008. Toxicological Relevance of EDCs and Pharmaceuticals in Drinking Water. Awwa Research Foundation. 484 pp.  
f. From Table 2 in Schriks et al. 2009.  In Press. Toxicological relevance of emerging contaminants for drinking water quality. Water Research, doi: 
10.1016/j.wateres.2009.08.023. 
g. From Table 3.2 in Cotruvo et al. 2010. Identifying Health Effects Concerns of the Water Reuse Industry and Prioritizing Research Needs for Nomination of Chemicals for 
Research to Appropriate National and International Agencies 



CEC Panel FINAL REPORT Appendix J 

 J - 22 

California Department of Public Health (2007). Drinking Water Notification Levels and 
Response Levels:  An Overview. Drinking Water Program.  

 Notification levels are calculated using standard risk assessment methods for non-
cancer and cancer endpoints, and typical exposure assumptions, including a 2-liter per 
day Drinking Water Consumption (DWC) rate, a 70-kilogram adult body weight (BW), a 

70-year lifetime, an RSC of 0.2, a 10
-6  cancer risk, and the upper 95% confidence limit on 

the cancer Slope Factor in (mg/kg-day)
-1 (q1*) 

 Non-carcinogens:  C = (NOAEL x BW x RSC)/(MF x UF x DWC) 

 Carcinogens: C = (BW x 10
-6

)/(q
1
* x DWC) 

 
USEPA CCL 3 List/PCCL 

 For the CCL process, HRLs were calculated by converting the RfD or other dose to µg/L, 
assuming 2 L/day of water consumed by a 70 kg adult, and a Relative Source 
Contribution (RSC) of 20%.   

 For carcinogens, the concentration at the 10-6 cancer risk was used and no RSC was 
included, assuming a 70-year exposure.   

Schwab et al. (2005). Human pharmaceuticals in US surface waters: a human health risk 
assessment.  Regulatory Toxicology and Pharmacology 42: 296-312. Note that values provided 
in the summary table with benchmarks from all the studies are for child receptors (more 
conservative than adults), with exposure parameters as follows: 

 

 Body weight – 14 kg 

 Water consumption – 1 L/day 

 Exposure frequency – 350 days/year 

 ADI averaging time – 2190 days 

 
Environment Protection and Heritage Council et al. (2008). Australian Guidelines for Water 
Recycling.  Augmentation of Drinking Water Supplies.    

 assume a bodyweight of 70 kg for adult 2-year-old and 13 kg for a 2-year old child  

 based on a risk of 10-6 

 2 L/day for an adult and 1 L/day for a 2-year-old child 

 Proportion (P) from water varies. For human-use pharmaceuticals P=1.0. For other CECs 
the default P=0.1. 
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Drinking water guideline   (mg/L) = NOEL (mg/kg bw/day) × bw (kg) × P 

          SF × V (L/day) with SF = safety factor 

For carcinogens:      (mg/L) = Risk x P x BW (kg) 

       SF (mg/kg-day) x V (L/day) with SF = slope factor 

 
Snyder et al. (2008). Toxicological Relevance of EDCs and Pharmaceuticals in Drinking Water. 
Water Research Foundation. 

 ADIs were converted to DWELs by multiplying the ADI by 70 kg BW and dividing by 2 
L/day (average daily ingestion rate of water) 

 Carcinogens assumed a cancer risk of 10-6 

 Noncarcinogens:  DWEL = ADI*70 kg*1000000 ng/mg 

           2 Liters/day 

 

 Carcinogens:      10-6 * 70kg * 25550 days * 1000000 ng/mg 

       SF * 2 L/day * 30 years * 365 days  with SF = slope factor 

 
Schriks et al. (2009). Toxicological relevance of emerging contaminants for drinking water 
quality. Water Research.  

 A drinking water equivalent level (DWEL) was calculated by multiplying the TDI by a 
typical average body weight of 70 kg and division by a daily water consumption of 2 
liters.  The DWEL was multiplied by a default allocation factor of 10%. 

 Cancer risk to an individual = 10-5 over a 70-year lifetime 

 
Cotruvo et al. (2010). Identifying Health Effects Concerns of the Water Reuse Industry and 
Prioritizing Research Needs for Nomination of Chemicals for Research to Appropriate 
National and International Agencies 

 60 kg    =   Default adult body weight 

 0.2     =    Default Relative Source Contribution from drinking water of 20%  

 2 L/day   =   Default daily drinking water intake for a 60-kg adult 
 

Action Level = ADI x 60 kg x 0.20   

           2 L/day  
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Appendix K - 90th Percentile MEC of 
CECs in Secondary/Tertiary Treated 
Effluents in California 

 

Acetaminophen 

 

 

Quantiles 

      

100.0% maximum 550 

99.5%  550 

97.5%  550 

90.0%  550 

75.0% quartile 292.95 

50.0% median 10 

25.0% quartile 1 

10.0%  1 

2.5%  1 

0.5%  1 

0.0% minimum 1 

 

Moments 

    

Mean 119.58 

Std Dev 241.03627 

Std Err Mean 107.7947 

Upper 95% Mean 418.86605 

Lower 95% Mean -179.7061 

N 5 

 

 

 

 

 

Atenolol 

 

 

Quantiles 

      

100.0% maximum 1800 

99.5%  1800 

97.5%  1800 

90.0%  1780 

75.0% quartile 1700 

50.0% median 1470 

25.0% quartile 830 

10.0%  20.48 

2.5%  5.6 

0.5%  5.6 

0.0% minimum 5.6 

 

Moments 

    

Mean 1226.8727 

Std Dev 641.19792 

Std Err Mean 193.32845 

Upper 95% Mean 1657.6354 

Lower 95% Mean 796.1101 

N 11 
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Atorvastatin 

 

Frequencies 

Level  Count Prob 

0 1 0.06667 

0.25 3 0.20000 

0.5 5 0.33333 

10 1 0.06667 

4.3 1 0.06667 

62 1 0.06667 

65 1 0.06667 

66 1 0.06667 

79 1 0.06667 

Total 15 1.00000 

 

 

Azithromycin 

 

 

Quantiles 

      

100.0% maximum 1200 

99.5%  1200 

97.5%  1200 

90.0%  1200 

75.0% quartile 1200 

50.0% median 540 

25.0% quartile 248 

10.0%  248 

2.5%  248 

0.5%  248 

0.0% minimum 248 

Moments 

    

Mean 662.66667 

Std Dev 487.7103 

Std Err Mean 281.57967 

Upper 95% Mean 1874.2062 

Lower 95% Mean -548.8729 

N 3 

 

 

Benzophenone 

 

 

Quantiles 

      

100.0% maximum 120 

99.5%  120 

97.5%  120 

90.0%  120 

75.0% quartile 115 

50.0% median 89 

25.0% quartile 69.5 

10.0%  50 

2.5%  50 

0.5%  50 

0.0% minimum 50 

 

Moments 

    

Mean 91.6 

Std Dev 26.87564 

Std Err Mean 12.019151 

Upper 95% Mean 124.97051 

Lower 95% Mean 58.229486 

N 5 
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Bisphenol A 

 

Quantiles 

     

100.0% maximum 520 

99.5%  520 

97.5%  520 

90.0%  286 

75.0% quartile 191.25 

50.0% median 19 

25.0% quartile 5 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 88.883333 

Std Dev 141.64005 

Std Err Mean 33.38488 

Upper 95% Mean 159.31927 

Lower 95% Mean 18.447393 

N 18 

 

 

Caffeine 

 

 

Quantiles 

      

100.0% maximum 2700 

99.5%  2700 

97.5%  2700 

90.0%  900 

75.0% quartile 355 

50.0% median 280 

25.0% quartile 50 

10.0%  3 

2.5%  0 

0.5%  0 

0.0% minimum 0 

Moments 

    

Mean 401.84211 

Std Dev 596.49572 

Std Err Mean 136.8455 

Upper 95% Mean 689.34384 

Lower 95% Mean 114.34037 

N 19 

 

Carbamezepine 

 

Quantiles 

     

100.0% maximum 480 

99.5%  480 

97.5%  480 

90.0%  400.2 

75.0% quartile 260 

 

50.0% 

median 200 

25.0% quartile 130 

10.0%  50 

2.5%  1.1 

0.5%  1.1 

0.0% minimum 1.1 

 



CEC Panel FINAL REPORT Appendix K 

 K - 4 

Moments 

    

Mean 209.3087 

Std Dev 113.48913 

Std Err Mean 23.664119 

Upper 95% Mean 258.38508 

Lower 95% Mean 160.23232 

N 23 

 

 

Clofibric acid 

 

 

Quantiles 

      

100.0% maximum 820 

99.5%  820 

97.5%  820 

90.0%  820 

75.0% quartile 820 

50.0% median 820 

25.0% quartile 820 

10.0%  820 

2.5%  820 

0.5%  820 

0.0% minimum 820 

 

Moments 

    

Mean 820 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 

Diazepam 

 

Quantiles 

     

100.0% maximum 5 

99.5%  5 

97.5%  5 

90.0%  5 

75.0% quartile 1.8 

50.0% median 0.94 

25.0% quartile 0.3 

10.0%  0.25 

2.5%  0.25 

0.5%  0.25 

0.0% minimum 0.25 

 

Moments 

    

Mean 1.3822222 

Std Dev 1.4857134 

Std Err Mean 0.4952378 

Upper 95% Mean 2.5242427 

Lower 95% Mean 0.2402018 

N 9 

 

 

Diclofenac 
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Quantiles 

      

100.0% maximum 230 

99.5%  230 

97.5%  230 

90.0%  203 

75.0% quartile 53 

50.0% median 21.5 

25.0% quartile 0.5125 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 48.198333 

Std Dev 75.303899 

Std Err Mean 17.749299 

Upper 95% Mean 85.646081 

Lower 95% Mean 10.750585 

N 18 

 

 

DEET 

 

 

Quantiles 

      

100.0% maximum 1700 

99.5%  1700 

97.5%  1700 

90.0%  1520 

75.0% quartile 925 

50.0% median 137 

25.0% quartile 81.775 

10.0%  45.5 

2.5%  44 

      

0.5%  44 

0.0% minimum 44 

 

Moments 

    

Mean 446.55833 

Std Dev 546.38599 

Std Err Mean 157.72805 

Upper 95% Mean 793.71543 

Lower 95% Mean 99.401238 

N 12 

 

 

Dilantin 

 

Quantiles 

      

100.0% maximum 220 

99.5%  220 

97.5%  220 

90.0%  217 

75.0% quartile 180 

50.0% median 160 

25.0% quartile 87 

10.0%  81.8 

2.5%  77 

0.5%  77 

0.0% minimum 77 

 

Moments 

    

Mean 149.73333 

Std Dev 48.506946 

Std Err Mean 12.52444 

Upper 95% Mean 176.59558 

Lower 95% Mean 122.87108 

N 15 
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1,4-Dioxane 

 

 

Frequencies 

Level  Count Prob 

1000 1 0.01333 

1100 4 0.05333 

1200 2 0.02667 

12600 1 0.01333 

1300 1 0.01333 

1400 9 0.12000 

1500 5 0.06667 

1600 11 0.14667 

1700 7 0.09333 

1800 7 0.09333 

1900 4 0.05333 

2000 6 0.08000 

2100 3 0.04000 

2200 4 0.05333 

2400 2 0.02667 

2500 1 0.01333 

2600 2 0.02667 

2700 1 0.01333 

2900 1 0.01333 

3000 1 0.01333 

3300 1 0.01333 

4800 1 0.01333 

Total 75 1.00000 

 

Erythromycin 

 

 

Quantiles 

      

100.0% maximum 113 

99.5%  113 

97.5%  113 

90.0%  113 

75.0% quartile 113 

50.0% median 113 

25.0% quartile 113 

10.0%  113 

2.5%  113 

0.5%  113 

0.0% minimum 113 

 

Moments 

    

Mean 113 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 

 

17 -Estradiol 

 

Quantiles 

      

100.0% maximum 0 

99.5%  0 

97.5%  0 

90.0%  0 

75.0% quartile 0 

50.0% median 0 

25.0% quartile 0 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 
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Moments 

    

Mean 0 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 

 

 

17 -Estradiol 

 

 

Quantiles 

      

100.0% maximum 8.4 

99.5%  8.4 

97.5%  8.4 

90.0%  8.4 

75.0% quartile 5.2 

50.0% median 1.5 

25.0% quartile 0.5 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 2.7 

Std Dev 2.9068884 

Std Err Mean 0.9689628 

Upper 95% Mean 4.9344322 

Lower 95% Mean 0.4655678 

N 9 

Estriol 

 

 

Quantiles 

      

100.0% maximum 0 

99.5%  0 

97.5%  0 

90.0%  0 

75.0% quartile 0 

50.0% median 0 

25.0% quartile 0 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 0 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 

 

 

Estrone 
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Quantiles 

      

100.0% maximum 73 

99.5%  73 

97.5%  73 

90.0%  72.2 

75.0% quartile 57 

50.0% median 3 

25.0% quartile 1.2 

10.0%  0.2 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 28.654545 

Std Dev 31.390329 

Std Err Mean 9.4645402 

Upper 95% Mean 49.742855 

Lower 95% Mean 7.5662358 

N 11 

 

 

Fluoxetine 

 

 

Quantiles 

      

100.0% maximum 32 

99.5%  32 

97.5%  32 

90.0%  30.5 

75.0% quartile 11.325 

50.0% median 1.3 

25.0% quartile 0.6625 

10.0%  0.5 

2.5%  0.5 

      

0.5%  0.5 

0.0% minimum 0.5 

 

Moments 

    

Mean 7.1916667 

Std Dev 11.082754 

Std Err Mean 3.1993155 

Upper 95% Mean 14.233313 

Lower 95% Mean 0.1500208 

N 12 

 

 

Furosemide 

 

Quantiles 

      

100.0% maximum 63 

99.5%  63 

97.5%  63 

90.0%  63 

75.0% quartile 63 

50.0% median 63 

25.0% quartile 63 

10.0%  63 

2.5%  63 

0.5%  63 

0.0% minimum 63 

 

Moments 

    

Mean 63 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 
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Gemfibrozil 

 

 

Quantiles 

      

100.0% maximum 4300 

99.5%  4300 

97.5%  4300 

90.0%  3550 

75.0% quartile 2612.5 

50.0% median 610 

25.0% quartile 0.925 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 1252.4068 

Std Dev 1411.3658 

Std Err Mean 300.90419 

Upper 95% Mean 1878.1713 

Lower 95% Mean 626.64229 

N 22 

 

 

o-hydroxy atorvastatin 

 

Quantiles 

      

100.0% maximum 10 

99.5%  10 

97.5%  10 

90.0%  10 

75.0% quartile 7.625 

50.0% median 0.5 

25.0% quartile 0.5 

10.0%  0.5 

2.5%  0.5 

0.5%  0.5 

0.0% minimum 0.5 

 

Moments 

    

Mean 2.875 

Std Dev 4.75 

Std Err Mean 2.375 

Upper 95% Mean 10.43331 

Lower 95% Mean -4.68331 

N 4 

 

p-hydroxy atorvastatin 

 

Quantiles 

      

100.0% maximum 10 

99.5%  10 

97.5%  10 

90.0%  10 

75.0% quartile 7.625 

50.0% median 0.5 

25.0% quartile 0.5 

10.0%  0.5 

2.5%  0.5 

0.5%  0.5 

0.0% minimum 0.5 
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Moments 

    

Mean 2.875 

Std Dev 4.75 

Std Err Mean 2.375 

Upper 95% Mean 10.43331 

Lower 95% Mean -4.68331 

N 4 

 

 

Ibuprofen 

 

 

Quantiles 

      

100.0% maximum 1000 

99.5%  1000 

97.5%  1000 

90.0%  500 

75.0% quartile 370 

50.0% median 50 

25.0% quartile 16 

10.0%  10 

2.5%  5.5 

0.5%  5.5 

0.0% minimum 5.5 

 

Moments 

    

Mean 191.21053 

Std Dev 253.12773 

Std Err Mean 58.071484 

Upper 95% Mean 313.21419 

Lower 95% Mean 69.206866 

N 19 

Iohexal 

 

 

Quantiles 

      

100.0% maximum 5948 

99.5%  5948 

97.5%  5948 

90.0%  5948 

75.0% quartile 5948 

50.0% median 5948 

25.0% quartile 5948 

10.0%  5948 

2.5%  5948 

0.5%  5948 

0.0% minimum 5948 

 

Moments 

    

Mean 5948 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 

 

 

Iopromide 
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Quantiles 

      

100.0% maximum 2174 

99.5%  2174 

97.5%  2174 

90.0%  2174 

75.0% quartile 800 

50.0% median 110 

25.0% quartile 30 

10.0%  11 

2.5%  11 

0.5%  11 

0.0% minimum 11 

 

Moments 

    

Mean 462.88889 

Std Dev 719.77539 

Std Err Mean 239.92513 

Upper 95% Mean 1016.1572 

Lower 95% Mean -90.37945 

N 9 

 

Ketoprofen 

 

Quantiles 

      

100.0% maximum 43 

99.5%  43 

97.5%  43 

90.0%  43 

75.0% quartile 32.25 

50.0% median 0 

25.0% quartile 0 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 10.75 

Std Dev 21.5 

Std Err Mean 10.75 

Upper 95% Mean 44.961298 

Lower 95% Mean -23.4613 

N 4 

 

 

Meprobamate 

 

 

Quantiles 

      

100.0% maximum 430 

99.5%  430 

97.5%  430 

90.0%  430 

75.0% quartile 340 

50.0% median 320 

25.0% quartile 265 

10.0%  31 

2.5%  31 

0.5%  31 

0.0% minimum 31 

 

Moments 

    

Mean 292.22222 

Std Dev 110.08948 

Std Err Mean 36.696495 

Upper 95% Mean 376.84449 

Lower 95% Mean 207.59995 

N 9 
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Methylisothiocyanate 

 

 

Quantiles 

      

100.0% maximum 120 

99.5%  120 

97.5%  120 

90.0%  114 

75.0% quartile 70 

50.0% median 50 

25.0% quartile 40 

10.0%  26 

2.5%  20 

0.5%  20 

0.0% minimum 20 

 

Moments 

    

Mean 60 

Std Dev 28.784917 

Std Err Mean 7.4322335 

Upper 95% Mean 75.940556 

Lower 95% Mean 44.059444 

N 15 

 

 

Metoprolol 

 

Quantiles 

      

100.0% maximum 246 

99.5%  246 

97.5%  246 

90.0%  246 

75.0% quartile 246 

50.0% median 246 

25.0% quartile 246 

10.0%  246 

2.5%  246 

0.5%  246 

0.0% minimum 246 

 

Moments 

    

Mean 246 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 

 

Musk ketone 

 

Quantiles 

      

100.0% maximum 25 

99.5%  25 

97.5%  25 

90.0%  25 

75.0% quartile 25 

50.0% median 25 

25.0% quartile 25 

10.0%  25 

2.5%  25 

0.5%  25 

0.0% minimum 25 
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Moments 

    

Mean 25 

Std Dev 0 

Std Err Mean 0 

Upper 95% Mean 25 

Lower 95% Mean 25 

N 6 

 

 

Naproxen 

 

Quantiles 

      

100.0% maximum 860 

99.5%  860 

97.5%  860 

90.0%  851 

75.0% quartile 126.25 

50.0% median 23 

25.0% quartile 1.175 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 150.03333 

Std Dev 281.22278 

Std Err Mean 66.284845 

Upper 95% Mean 289.88213 

Lower 95% Mean 10.184535 

N 18 

NDMA 

 

 

Quantiles 

      

100.0% maximum 330 

99.5%  330 

97.5%  208 

90.0%  67.7 

75.0% quartile 42.5 

50.0% median 29 

25.0% quartile 19 

10.0%  11.3 

2.5%  7.5575 

0.5%  6.6 

0.0% minimum 6.6 

 

Moments 

    

Mean 39.593478 

Std Dev 43.414478 

Std Err Mean 4.5262722 

Upper 95% Mean 48.584362 

Lower 95% Mean 30.602595 

N 92 

 

 

Nonylphenol 
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Quantiles 

      

100.0% maximum 161 

99.5%  161 

97.5%  161 

90.0%  161 

75.0% quartile 161 

50.0% median 81.3 

25.0% quartile 1.6 

10.0%  1.6 

2.5%  1.6 

0.5%  1.6 

0.0% minimum 1.6 

 

Moments 

    

Mean 81.3 

Std Dev 112.71282 

Std Err Mean 79.7 

Upper 95% Mean 1093.9845 

Lower 95% Mean -931.3845 

N 2 

 

 

Octylphenol 

 

 

 

Quantiles 

      

100.0% maximum 210 

99.5%  210 

97.5%  210 

90.0%  207 

75.0% quartile 25 

50.0% median 25 

25.0% quartile 25 

10.0%  5.84 

      

2.5%  0.2 

0.5%  0.2 

0.0% minimum 0.2 

 

Moments 

    

Mean 52.433333 

Std Dev 71.64939 

Std Err Mean 20.683397 

Upper 95% Mean 97.957184 

Lower 95% Mean 6.9094825 

N 12 

 

PFOA 

 

Quantiles 

      

100.0% maximum 28 

99.5%  28 

97.5%  28 

90.0%  28 

75.0% quartile 27.25 

50.0% median 21 

25.0% quartile 15.5 

10.0%  15 

2.5%  15 

0.5%  15 

0.0% minimum 15 

 

Moments 

    

Mean 21.25 

Std Dev 6.2383224 

Std Err Mean 3.1191612 

Upper 95% Mean 31.176563 

Lower 95% Mean 11.323437 

N 4 
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PFOS 

 

Quantiles 

      

100.0% maximum 90 

99.5%  90 

97.5%  90 

90.0%  90 

75.0% quartile 82.75 

50.0% median 53.5 

25.0% quartile 28.75 

10.0%  23 

2.5%  23 

0.5%  23 

0.0% minimum 23 

 

Moments 

    

Mean 55 

Std Dev 28.08321 

Std Err Mean 14.041605 

Upper 95% Mean 99.686653 

Lower 95% Mean 10.313347 

N 4 

 

 

Primidone 

 

Quantiles 

      

100.0% maximum 285 

99.5%  285 

97.5%  285 

90.0%  264 

75.0% quartile 150 

50.0% median 130 

25.0% quartile 97 

10.0%  68.2 

2.5%  40 

0.5%  40 

0.0% minimum 40 

 

Moments 

    

Mean 143.06667 

Std Dev 65.858579 

Std Err Mean 17.004612 

Upper 95% Mean 179.53793 

Lower 95% Mean 106.5954 

N 15 

 

Progesterone 

 

Quantiles 

      

100.0% maximum 18 

99.5%  18 

97.5%  18 

90.0%  18 

75.0% quartile 10.75 

50.0% median 1 

25.0% quartile 0 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 
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Moments 

    

Mean 4.375 

Std Dev 7.2690636 

Std Err Mean 2.5700021 

Upper 95% Mean 10.452089 

Lower 95% Mean -1.702089 

N 8 

 

 

Propranolol 

 

 

Quantiles 

      

100.0% maximum 25 

99.5%  25 

97.5%  25 

90.0%  25 

75.0% quartile 25 

50.0% median 25 

25.0% quartile 25 

10.0%  25 

2.5%  25 

0.5%  25 

0.0% minimum 25 

 

Moments 

    

Mean 25 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 

Salicylic acid 

 

 

Quantiles 

      

100.0% maximum 110 

99.5%  110 

97.5%  110 

90.0%  110 

75.0% quartile 109.5 

50.0% median 90 

25.0% quartile 74.1 

10.0%  63 

2.5%  63 

0.5%  63 

0.0% minimum 63 

 

Moments 

    

Mean 91.44 

Std Dev 19.382157 

Std Err Mean 8.667964 

Upper 95% Mean 115.50613 

Lower 95% Mean 67.373874 

N 5 

 

 

Simvastatin hydroxyacid 
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Quantiles 

      

100.0% maximum 25 

99.5%  25 

97.5%  25 

90.0%  25 

75.0% quartile 18.8125 

50.0% median 0.25 

25.0% quartile 0.25 

10.0%  0.25 

2.5%  0.25 

0.5%  0.25 

0.0% minimum 0.25 

 

Moments 

    

Mean 6.4375 

Std Dev 12.375 

Std Err Mean 6.1875 

Upper 95% Mean 26.128887 

Lower 95% Mean -13.25389 

N 4 

 

 

Sulfamethoxazole 

 

 

Quantiles 

      

100.0% maximum 2100 

99.5%  2100 

97.5%  2100 

90.0%  1400 

75.0% quartile 1150 

50.0% median 295 

25.0% quartile 110 

10.0%  5 

2.5%  2.3 

      

0.5%  2.3 

0.0% minimum 2.3 

 

Moments 

    

Mean 577.12105 

Std Dev 603.79351 

Std Err Mean 138.51973 

Upper 95% Mean 868.14021 

Lower 95% Mean 286.1019 

N 19 

 

 

TCEP 

 

Quantiles 

      

100.0% maximum 730 

99.5%  730 

97.5%  730 

90.0%  688 

75.0% quartile 500 

50.0% median 400 

25.0% quartile 314 

10.0%  250.4 

2.5%  240 

0.5%  240 

0.0% minimum 240 

 

Moments 

    

Mean 422.54545 

Std Dev 135.79497 

Std Err Mean 40.943723 

Upper 95% Mean 513.77375 

Lower 95% Mean 331.31716 

N 11 
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TCPP 

 

 

Quantiles 

      

100.0% maximum 7200 

99.5%  7200 

97.5%  7200 

90.0%  5920 

75.0% quartile 2250 

50.0% median 1200 

25.0% quartile 572 

10.0%  343.2 

2.5%  270 

0.5%  270 

0.0% minimum 270 

 

Moments 

    

Mean 1828.2308 

Std Dev 1903.4643 

Std Err Mean 527.92601 

Upper 95% Mean 2978.4827 

Lower 95% Mean 677.9788 

N 13 

 

 

TDCPP 

 

Quantiles 

      

100.0% maximum 296 

99.5%  296 

97.5%  296 

90.0%  296 

75.0% quartile 222 

50.0% median 0 

25.0% quartile 0 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 

Moments 

    

Mean 74 

Std Dev 148 

Std Err Mean 74 

Upper 95% Mean 309.50103 

Lower 95% Mean -161.501 

N 4 

 

Testosterone 

 

Quantiles 

      

100.0% maximum 1 

99.5%  1 

97.5%  1 

90.0%  1 

75.0% quartile 0.75 

50.0% median 0 

25.0% quartile 0 

10.0%  0 

2.5%  0 

0.5%  0 

0.0% minimum 0 

 



CEC Panel FINAL REPORT Appendix K 

 K - 19 

Moments 

    

Mean 0.25 

Std Dev 0.46291 

Std Err Mean 0.1636634 

Upper 95% Mean 0.6370025 

Lower 95% Mean -0.137002 

N 8 

 

 

Triclocarban 

 

 

Quantiles 

      

100.0% maximum 223 

99.5%  223 

97.5%  223 

90.0%  223 

75.0% quartile 223 

50.0% median 223 

25.0% quartile 223 

10.0%  223 

2.5%  223 

0.5%  223 

0.0% minimum 223 

 

Moments 

    

Mean 223 

Std Dev . 

Std Err Mean . 

Upper 95% Mean . 

Lower 95% Mean . 

N 1 

Triclosan 

 

 

Quantiles 

      

100.0% maximum 510 

99.5%  510 

97.5%  510 

90.0%  485 

75.0% quartile 380 

50.0% median 25 

25.0% quartile 1.9 

10.0%  1.1 

2.5%  1 

0.5%  1 

0.0% minimum 1 

 

Moments 

    

Mean 168.37368 

Std Dev 203.52077 

Std Err Mean 46.690866 

Upper 95% Mean 266.46755 

Lower 95% Mean 70.279814 

N 19 
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Trimethroprim 

 

 

Quantiles 

      

100.0% maximum 120 

99.5%  120 

97.5%  120 

90.0%  111.6 

75.0% quartile 89.5 

50.0% median 44.5 

25.0% quartile 1 

10.0%  0.28 

2.5%  0.25 

0.5%  0.25 

0.0% minimum 0.25 

 

Moments 

    

Mean 49.883333 

Std Dev 44.288334 

Std Err Mean 12.784941 

Upper 95% Mean 78.022798 

Lower 95% Mean 21.743869 

N 12 
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Appendix L - Assays currently Available Requiring Limited Quality 
Assurance/Quality Control Development 

In vitro assays 

Multiple in vitro assays are available for the assessment of specific biological responses.  
Receptor binding assays for the estrogen and androgen receptor have been approved for 
EDSTAC as has the H295R steroidogenesis assay (USEPA, 2009a). Alternative systems for 
estrogenic activity that have been also been evaluated include the MCF-7 cell line (E-screen), 
the Yeast Estrogen Screening (YES) bioassay, the Estrogen-Receptor-CALUX system (popular in 
Europe), and the rainbow trout tissue slice method (Developed by USEPA) (Leusch, 2008). Each 
of these assays can be calibrated against 17β-estradiol to provide EEQ  (ng/L) of any water 
matrix.  

A recent round robin experiment used five in vitro assays (YES, ER-CALUX, MELN, T47D-
KBluc and E-Screen) to measure estrogen equivalence in the range of 0.1 to 320 ng/L EEq 
(Leusch, 2008). Tap water was spiked with chemicals that have estrogenic activity including 
hormones, alkylphenols, phthalates, pesticides, phytosterols. In addition, real environmental 
samples including sewage, river and groundwater were tested. The two assays that seemed to 
work the best were the ER-Calux and the E-screen assays and these also correlated the best 
with analytical chemistry results for spiked contaminants. The ER-Calux assay depends on T47D 
human breast cancer cells which contain a stably transfected ERE-Luciferase plasmid. These 
cells express both human ERs (ERα and ERβ). In the presence of estrogen, luciferase is 
expressed by the cells which can be read by a luminescence plate reader.   The E-screen is an 
assay that depends on the proliferation of MCF-7 cells (another human breast cancer cell line) 
and tests the action of estrogen on both genomic and non-genomic modes of action (e.g., 
membrane signaling effects as well as direct gene expression effects through soluble estrogen 
receptors). Both assays were considered to be robust and reliable and worked well to screen 
the estrogenic compounds. Both of these assays could easily be performed in the commercial 
realm on aliquots of water extracts used for analytical chemistry measurements. 

When evaluating nine studies over the last ten years where EEQ derived from in vitro assays 
and analytical chemistry for estrogenic compounds was conducted, a very strong correlation 
was observed (Figure 6.2). This plot compiled data from studies done around the world in a 
variety of water types, including river surface water, stream surface water and wastewater 
influents/effluents using four different in vitro bioassays (Bulloch, Lavado et al. in press). 
Consequently, a relatively inexpensive bioassay can be used to garner information about the 
occurrence of known and unknown compounds in water that have estrogen-like activity. 

Another in vitro bioassay has recently been through an interlaboratory comparison and 
targets a highly conserved pathway involved in steroid biosynthesis in humans (Hecker, Giesy et 
al. 2008). The H295R steroidogenesis assay is based on a human adreno-carcinoma cell line and 
measures alterations of steroidogenesis. The H295R cells represent a unique in vitro system in 
that they have the ability to produce all of the steroid hormones found in the adult adrenal 
cortex and the gonads, allowing testing for effects on both corticosteroid synthesis and the 
production of sex steroid hormones such as progesterone, androgens and estrogens. This assay 
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is relatively new but has been validated in an initial round robin test by OECD (Hecker, Giesy et 
al. 2009) and approved for use for the EDSP (USEPA, 2009a). 

There are also a number of genotoxic assays that have been used to test wastewater, 
surface water, and drinking water (Žegura, Heath et al. 2009). In particular, the AMES test (ISO 
16240:2005), the SOS/umuC assay ((Hamer, Bihari et al. 2000) and ISO 13829:2000), and the in 
vitro micronucleus test that has been applied to wastewater samples ((Reifferscheid, Ziemann 
et al. 2008) and ISO 21427-2:2006). The first two are established assays that rely on 
genotoxicity to bacteria, while the micronucleus test uses a mammalian cell line, V79 cells. (See 
also the summary in Table I.2 of the results of several bioassays applied to recycled water.) 

The use of genotoxic and cytotoxic assays may allow determination of potential harm to 
human health. The in vitro micronucleus test which uses mammalian cells to test for 
cytotoxicity and mutagenicity has recently undergone a round robin test (Reifferscheid, 
Ziemann et al. 2008; Bulloch, Lavado et al. in press). The test is simple in design and powerful to 
show effects of genotoxic chemicals. The round robin was performed by ten different 
laboratories representing government, industries and academic institutions. Cells were 
incubated with the test solutions for 24 hours and then fixed on slides for examination of 
micronuclei formation. Cytotoxicity must also be measured since this could confound the 
results. This was done by measuring the survival index (growth rate of treated cells versus 
control cells). This test could easily be done in commercial laboratories. 

Another example is the use of a combination of the SOS/umuC assay with Salmonella 
typhimurium and the MTT cytotoxicity assay with human hepatoma HepG2 cells, respectively 
(Žegura, Heath et al. 2009). The SOS/umuC assay has been standardized and is currently used in 
many countries to test water effluents (Hamer, Bihari et al. 2000; Dizer, Wittekindt et al. 2002). 
HepG2 cells are of hepatic origin and therefore contain a variety of metabolizing enzymes and 
are therefore useful to also measure potential cytotoxic or genotoxic metabolites that may 
result from metabolism of xenobiotics (Mersch-Sundermann, Knasmuller et al. 2004). Using 
these assays,  Žegura et al. (Žegura, Heath et al. 2009) demonstrated that none of the water 
extracts from potable sites were cytotoxic. These tests are relatively quick to perform and can 
give assurance of safety for human health. 

 

In vivo assays 

As indicated above, EDSTAC suggested several bioassays in rats, fish, and amphibians to 
evaluate the estrogenic, androgenic and thyroid receptor mediated effects in humans and 
wildlife. Two approved assays that lend themselves to the assessment of water include the 
Fathead Minnow recrudescence assay (Ankley, Jensen et al. 2001)and the FETAX assay (Hoke 
and Ankley 2005). The choice of these assays is not specifically geared to effects in wildlife, but 
may also be used to evaluate estrogenic and thyroid disruption to all vertebrates including 
humans.  

For estrogenic activity, the Fathead minnow recrudescence bioassay has been specifically 
developed by EDSTAC and has undergone extensive review by the USEPA for chemical testing.  
This assay measures effects on reproduction (number of eggs produced, number of fertilized 
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eggs, number of hatched eggs and survival of fry) from endocrine disruptors that affect any 
point along the HPG axis. Likewise, FETAX (frog embryo teratogenesis assay xenopus) has been 
proposed for determining thyroid active compounds (USEPA 2009a). Two endpoints are 
assessed with the assay: mortality and malformation of embryos.  

 

Assays requiring additional quality assurance/control development 

In vitro assays 

Nuclear Receptor Cell-Based Assays.   

InVitrogen, Inc has developed commercial kits for 22 soluble hormone receptors that are 
implicated in toxicity pathways. The assays are for the following receptors:  androgen receptor 
(AR), estrogen receptors alpha and beta (ERα, ERβ), estrogen related receptor alpha (ERRα), 
farnesoid x receptor (FXR), glucocorticoid receptor (GR), liver X receptors alpha and beta (LXRα, 
LXRβ),  mineralocorticoid receptor (MR), peroxisome proliferator-activated receptors alpha, 
delta, and gamma (PPARα, PPARδ, PPARγ), progesterone receptor (PR), retinoic acid receptors 
alpha, beta, and gamma (RARα, RARβ, RARγ), retinoic acid related orphan receptor (ROR), 
retinoic X receptors alpha and beta (RXRα, RXRβ), thyroid receptors alpha and beta (TRα, TRβ) 
and vitamin D receptor (VDR). These assays are all validated and ready for high throughput 
screening.  In fact, the National Toxicology Program in its Tox21 studies is in the process of 
using these assays to screen approximately 10,000 chemicals (Collins, Gray et al. 2008). These 
assays are using a 15 point dose response curve in the range of 5 nM to 100 μM. These assays 
should be immediately amenable to commercial laboratories. Of particular importance to 
drinking water would be the assays for soluble sex hormone receptors (AR, ERs, PR).    

 

In vivo assays 

Genomic Assays 

USEPA has clearly stated that toxicology will eventually be assessed through in silico methods as 
data on the effects of compounds on biological systems become more available.  Chemicals 
provide specific signatures or “fingerprints” of biological responses at the genomic level of 
biological organization. To evaluate these signatures, microarrays for transcriptome studies are 
commercially available for zebrafish, fathead minnows and a large assortment of mammalian 
models, including rat, mouse and human among others (Affymetrix and Agilent).  Mammalian 
cell lines (for example HepG2) can be treated with waters in the laboratory to determine 
sublethal toxicity pathways that are changed upon exposure. Alternatively, small fish models 
such as zebrafish and fathead minnows can be exposed to waters for a short period (24 to 96 h) 
and relevant tissues excised and measured for adverse changes in gene transcription related to 
toxicity pathways.  Once calibrated for specific mode of action, these assays should provide an 
indication of the “type” of compounds present within the matrix. With subsequent studies 
using refined in vitro assays in a Toxicity Identification Evaluation approach, specific compounds 
may eventually be identified. Even more importantly these assays may be used to determine 
the “no observable adverse transcription effect level (NOATEL)”. To be fully useful for 
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regulatory use these assays must still be vetted in round robin tests and commercial 
laboratories will have to be trained in their proper use.  

 

On-line fish bioassays 

A National Research Council panel recommended flow-through biomonitoring systems as a 
potential tool for certain water quality situations (NRC 1998). To implement such a system, fish 
were utilized by the Orange County Water District as an investigative model to develop a 
standard test platform, and evaluate the water quality of shallow ground water originating 
from the Santa Ana River (Deng, Carney et al. 2008). The endpoinst focused upon chronic 
exposure (3 months) and included histopathology (i.e., cancer), endocrine and reproduction 
metrics. A more developed system has been employed in Singapore primarily for acute impacts 
of water quality 
(http://www.pub.gov.sg/mpublications/Pages/PressReleases.aspx?ItemId=178). Disadvantages 
of these systems are differentiating non-chemical and chemical stressors as well as appropriate 
controls for use in assessing potential adverse effects in humans.  

 

http://www.pub.gov.sg/mpublications/Pages/PressReleases.aspx?ItemId=178
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Appendix M - Prerequisites for Monitoring CECs in Recycled Water 

Background and History of Efforts to Monitor CECs in Recycled Water 

Although the term “emerging contaminants” has often been applied to chemicals that have 
been recently detected in the environment, the analysis of endocrine disrupting compounds 
(EDCs) and pharmaceuticals and personal care products (PPCPs) has been ongoing for decades.  
In the 1960s, Stumm-Zollinger and Fair (Stumm-Zollinger and Fair 1965) used UV absorbance to 
study the biodegradation of steroid hormones in wastewater. In the 1970s, Tabak and Bunch 
(Tabak, Bunch et al. 1970) studied steroid hormones as water pollutant and Hignite and 
Azarnoff (Hignite and Azarnoff 1977) studied the presence of chlorophenoxyisobutyrate (a 
biologically active metabolite of clofibrate) and salicylic acid (commonly known as aspirin) in 
wastewater using gas chromatography-mass spectrometry (GC-MS). Despite these reports of 
EDCs and pharmaceuticals in the environment, they received little attention until researchers in 
the United Kingdom and United States linked the occurrence of trace steroids to biological 
activity in fish and cellular bioassays (Desbrow, Routledge et al. 1998; Routledge, Sheahan et al. 
1998; Snyder, Villeneuve et al. 2001). The most prolific study was published in 2002 by the U.S. 
Geological Survey (Kolpin, Furlong et al. 2002), titled “Pharmaceuticals, hormones, and other 
organic waste contaminants in US streams, 1999-2000: a national reconnaissance”. This 
manuscript reported summed steroid hormone concentrations as high as several µg/L and 
maximum 17α-ethynyl estradiol (EE2) and 19-norethisterone concentrations of 831 and 872 
ng/L, respectively (Kolpin, Furlong et al. 2002). The USGS subsequently retracted some of the 
steroid hormone data stating that “seven concentrations of EE2 (ranging from 0.023 to 0.831 
µg/L) and four concentrations of mestranol (ranging from 0.034 to 0.197 µg/L) were 
erroneously published and should have been reported as nondetections” 
(http://toxics.usgs.gov/regional/est_errata.html). However, even accounting for these 
corrections, the USGS data still indicate the highest concentrations of steroid hormones ever 
reported in environmental waters. Based on EPA dossiers for the nine steroid hormones 
included in Contaminant Candidate List 3 (CCL3), the Kolpin manuscript appears to have been 
the dominant factor in occurrence attributes used for the EPA’s listing decision (see also 
discussion on CCL3 in Section 2). With regard to CCL3 dossier information, it is also of interest 
that the 10-6 calculated cancer risk level for 17β-estradiol (E2) is 0.9 ng/L, making the key 
endogenous estrogen almost as potent a carcinogen as N-nitrosodimethylamine (NDMA) (10-6 
cancer risk at 0.7 ng/L). It is worth noting that the occurrence section of the E2 CCL3 dossier 
cites the Kolpin et al. (Kolpin, Furlong et al. 2002)  maximum concentration of 200 ng/L as well 
as a reference to research showing no detectable E2 concentrations in U.S. finished drinking 
water (Snyder, Wert et al. 2007). 

These developments, along with advances in analytical instrumentation, have led to a rapid 
increase in the number of analytical techniques used to study steroid hormones and other 
exogenous agents such as pharmaceuticals and personal care products (PPCPs) in water.  
Analytical techniques have increased the sensitivity and accuracy of CEC analysis, allowing ultra-
trace levels of a wide variety of contaminants to be identified and quantified. For instance, a 
number of pharmaceuticals and perfluorinated organic compounds have been recently 
reported to occur in US drinking waters {Benotti, 2009; Quinones, 2009).   
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Because CECs represent an extremely broad spectrum of compounds, developing a single 
all-encompassing technique for their analysis is highly unlikely. These chemicals vary widely in 
their physico-chemical properties (e.g., polarity, molecular weight, pKa, water solubility, etc.) 
making analysis by traditional analytical techniques difficult. Additionally, the concentration of 

many CECs in the environment can be quite low, typically sub- g/L, which further increases the 
complexity of analysis by necessitating extraction and concentration steps.  

In general; however, a plan for the analysis of target CECs encompasses similar primary 
steps including: sample collection/preservation, analysis and quantification. Many excellent 
reviews exist that can be used for background information on this topic (Lopez de Alda and 
Barcelo 2001; Ternes 2001; Richardson 2002; Richardson 2004; Koester and Moulik 2005; 
Petrovic, Hernando et al. 2005; Richardson and Ternes 2005; Richardson 2006).   

 

Example Requirements for Compliance Monitoring 

Compliance is based on a number of factors and depends on the individual contaminant. 
Using atrazine as an example, compliance (per 141.24(h) is determined as follows for this 
chemical; note that some sections have been removed for brevity): 

(11) Compliance with § 141.61(c) shall be determined based on the analytical results 
obtained at each sampling point. If one sampling point is in violation of an MCL, the 
system is in violation of the MCL. 

(i) For systems monitoring more than once per year, compliance with the MCL is 
determined by a running annual average at each sampling point. 

(ii) Systems monitoring annually or less frequently whose sample result exceeds the 
regulatory detection level as defined by paragraph (h)(18) of this section must begin 
quarterly sampling. The system will not be considered in violation of the MCL until it has 
completed one year of quarterly sampling. 

(iii) If any sample result will cause the running annual average to exceed the MCL at any 
sampling point, the system is out of compliance with the MCL immediately. 

(iv) If a system fails to collect the required number of samples, compliance will be based 
on the total number of samples collected. 

(v) If a sample result is less than the detection limit, zero will be used to calculate the 
annual average. 

(16) The State has the authority to determine compliance or initiate enforcement action 
based upon analytical results and other information compiled by their sanctioned 
representatives and agencies. 

(20) All new systems or systems that use a new source of water that begin operation 
after January 22, 2004 must demonstrate compliance with the MCL within a period of 
time specified by the State. The system must also comply with the initial sampling 
frequencies specified by the State to ensure a system can demonstrate compliance with 
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the MCL. Routine and increased monitoring frequencies shall be conducted in 
accordance with the requirements in this section. 

 

Recommended QA/QC Guidelines for Commercially Available Methods 

To ensure the quality of the data, methods approved by USEPA demand rigorous quality 
assurance/quality control (QA/QC) measures. In general, QA/QC involves the following: 

1.  Detailed written protocols in place for positive and negative controls to monitor tests 
such as blanks, spikes, and reference materials;  

2.  Tests to define the variability and/or repeatability of the laboratory results such as 
replicates;  

3.  Measures to assess the accuracy of the test method including calibration and/or 
continuing calibrations, use of certified reference materials, and proficiency test 
samples;  

4. Measures to evaluate test method capability, such as limit of detection and limit of 
quantification or range of applicability such as linearity;  

5.  Selection of appropriate formulae to reduce raw data to final results such as 
regression analysis, comparison to internal/external standard calculations, and 
statistical analyses;  

6.  Selection and use of reagents and standards of appropriate quality;  

7.  Measures to ensure the selectivity of the test for its intended purpose; and,  

8.  Measures to ensure constant and consistent test conditions. 

Specific quality control practices generally involve an initial demonstration of capability 
(or proficiency) and then ongoing quality control measures that validate the data 
through acceptance criteria.  A demonstration of capability may be required prior to 
using any test method and any time there is a change in instrument type, personnel, or 
test method.  This typically involves the determination of the limit of detection and limit 
of quantification, an evaluation of precision and bias, and an evaluation of selectivity. 

 

On-going quality control may involve the use of the following controls: 

 Laboratory performance controls 

 Method blank or laboratory reagent blank – This negative control is used to assess the 
sample batch for possible contamination during the preparation and processing steps. 

 Laboratory control standard or laboratory fortified blank – The laboratory control 
standard is used to evaluate the performance of the total analytical system, including all 
preparation and analysis steps.  Results of the laboratory control standard are compared 
to established criteria.  Failure to meet these criteria indicates that the analytical system 
is not performing correctly and may not be producing acceptable results.  Control 
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standards are typically prepared using a standard that differs from the one used to 
prepare the instrument calibration curve. 

 Continuing calibration check – This standard is used to evaluate the reliability of the 
calibration curve. 

 Sample-specific controls 

 Matrix spikes or laboratory fortified sample matrix – Matrix-specific quality control 
samples indicate the effect of the sample matrix on the precision and accuracy of the 
results generated using the selected methods. 

 Matrix duplicates – Matrix duplicates are replicate aliquots of the same sample taken 
through the entire analytical procedure.  The results from this analysis indicate the 
precision of the results for the specific sample using the selected method.  The matrix 
duplicate provides a usable measure of precision only when target analytes are found in 
the sample chosen for duplication. 

 Surrogate spikes – Surrogates are chosen to reflect the chemistries of the targeted 
components of the method.  Added prior to sample preparation/extraction, they 
provide a measure of recovery for every sample matrix.  These are typically used in lieu 
of techniques like isotope dilution and when matrix characterization is not practical 
because the method is being used for large numbers of highly variable sample matrices. 

 Limit of detection and limit of quantification – Limits of detection and quantification 
define the lowest levels at which the instrument can differentiate between a signal and 
noise and the lowest level at which a value may be reported, respectively.  After the 
initial demonstration of capability, these limits are monitored and re-evaluated, as 
necessary. 

 


